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Summary

A finite-difference method is used to investigate compressible, laminar
boundary-layer flows of a dilute dusty gas over a semi-infinite flat plate.
Details are given of the implicit finite-difference schemes as well as the
boundary conditions, initial conditions and compatibility conditions for
solving the gas-particle boundary-layer equations. The flow profiles for
both the gas and particle phases were obtained numerically along the whole
length of the plate from the leading edge to far downstream of it. The
finite-difference solutions in the large-slip region and the small-slip
region are compared with the asymptotic solutions and good agreement is
achieved. The boundary-layer characteristics of interest, including the
wall shear stress, the wall heat-transfer rate and the displacement
thickness, are calculated. The alteration of the flow properties owing to
the presence of particles is discussed in detail. It was found that the
boundary-layer flow of a dusty gas can be divided into three distinct flow
regimes which are characterized by quasi-frozen, nonequilibrium and
quasi-equilibrium flows and that at a critical distance from the leading
edge the particle velocity at the wall decelerates to zero and
near-equilibrium is achieved between the gas and particle flows. For the
laminar boundary layer of a dusty gas, the shear stress and the
heat-transfer at the wall are increased and the displacement thickness is
decreased compared with the pure-gas case alone.
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Notation

i
An coefficients of the finite-difference equations, Eqs.

(3.12)-(3.20) and (3.26)-(3.27)

an ?rid parameters for the six-point difference scheme, Eq.
5.14)3

aT coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

au coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10)

i
Bn coefficients of the finite-difference equations, Eqs.

(3.12)-(3.20) and (3.26)-(3.27)

bn rid parameters for the six-point difference scheme, Eq.
5.14)

bT coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

bu coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10)

CD general drag coefficient for a sphere in a viscous fluid

CDo Stokesian drag coefficient for a sphere in a viscous fluid

i
Cn  coefficients of the finite-difference equations, Eqs.

(3.12)-(3.20) and (3.26)-(3.27)

cn grid parameters for the six-point difference scheme, Eq.
(3.14)

Cp specific heat at constant pressure for the gas phase

cs  specific heat for the particle phase

cT coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

cu coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10)

D normalized drag coefficient for a sphere in a viscous
fluid
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i
On  coefficients of the finite-difference equations, Eqs.

(3.12)-(3.20) and (3.26)-(3.27)

d diameter of the particles

dn grid parameters for the six-point difference scheme, Eq.
(3.14)

dT coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

du  coefficient for fittin a polynomial to the gas velocity
near the wall, Eq. (5.10?

Ec gas Eckert number based on the freestream temperature,
Ec = .* T*

-n recurrence coefficients in the Thomas algorithm, Eq. (4.1)

F integrated function of the nondimensional displacement
thickness, Eq. (5.14)

i
Fn recurrence coefficients in the Thomas algorithm, Eq. (4.1)

f transformation function for the asymptotic solution

i
Gn recurrence coefficients in the Thomas algorithm, Eq. (4.1)

K ratio of consecutive step sizes in the y-direction,
K = Ayn/Ayn I

k heat conductivity for the gas phase

m grid line in the y-direction

N grid point at the outer edge of the boundary layer

Nu Nusselt number based on the particle diameter

n grid line in the x-diretion

Pr gas Prandtl number, Pr c*p*/k*
p

p gas pressure

q heat-transfer rate

R gas constant
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Re. flow Reynolds number based on the particle equilibrium

length, Re. = pu*Xt/j*

T temperature

u tangential velocity in the x-direction

v normal velocity in the y-direction

W function representing any flow property, u, v, p or T

x coordinate along the wall

y coordinate normal to the wall

Greek Symbols

a ratio of the specific heats for the two phases, a = Cp/C s

mass loading ratio of the particles in the freestream,
,P I

6 displacement thickness of the boundary layer

Csmall quantity used in testing for the outer edge of the
boundary layer, Eq. (4.6)

similarity variable for the asymptotic solution

8 weighting factor for the finite-difference schemes

CO particle velocity-equilibrium length, X% = psd= * /181*

dynamic viscosity for the gas phase

derivative of the gas viscosity with respect to the gas
temperature, t' = dpi/dT

p density

Ps density of the particle material

shear stress

W power index for the gas viscosity

Subscripts

asy asymptotic solution
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cri critical point

m grid line in the y-direction

n grid line in the x-direction

p particle

s slip quantity

w wall conditions

CD frees+r-eam conditions

o initial conditions

Superscripts

* dimensional

index for dependent variables: i = 1, 2, 3, 4, 5, 6
represent u, T, Up, Vp, Tp and pp, respectively
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1. INTRODUCTION

Boundary-layer flows of a dusty gas have been investigated using several
analytical methods: a series method [1-7], an integral method [8-11], and a
finite-difference method [12-15]. All the work mentioned above, however,
dealt with incompressible-flow cases for the gas phase. Very few authors
[16-18] considered the problems of compressible boundary-layer flows where
the density of the gas phase can be changed due to compressibility. As
pointed out by Singleton [17], Chiu [16] employed incorrect boundary-layer
equations and assumed that the particle density is constant. Singleton
extended Marble's analysis [1] to compressible boundary-layer flows. He
applied the ciordinate perturbation method and obtained asymptotic solutions
for two limiting regions (see Fig. 1): for the large-slip (or quasi-frozen)
region near the leading edge (1) and for the small-slip (or
quasi-equilibrium) region far downstream of the leading edge (III). Zhao
[18] used a similar series-expansion method and improved Singleton's
analysis. However, these series solutions in the form of asymptotic
expansions could provide only one term in addition to the frozen or
equilibrium-flow values, owing to the complexity of the problem. Moreover,
this solution does not provide any information on the boundary-layer
development in the nonequilibrium transition region where the slip is
moderate. A thorough understanding of the compressible dusty-gas
boundary-layer over the entire-flow region is important, since these flows
have practical applications in many scientific and technical fields such as
solid rocket exhaust nozzles, nuclear reactors with gas-solid feeds,
ablation cooling, blast waves moving over the Earth's surface, conveying of
powdered materials, fluidized bed and environmental pollution, as mentioned
in Refs. [12, 19].

In the present paper, the behaviour of compressible, laminar
boundary-layer flows of a dusty gas over a semi-infinite flat plate along
the whole length of the plate is studied using a finite-difference method.
The problem of two-phase suspension flows is solved in the framework of a
model of two interpenetrating and interacting continuous media, which is
called a two-way coupling model or a two-fluid approach [20,21]. The
following assumptions are made in this analysis: (1) The gas-particle
mixture is a dilute system where the volume fraction of the particle phase
is neglected. (2) The gas phase is a perfect gas. (3) The particles are
spheres of uniform size without random kinetic motion. There are no mutual
collisions or other interactions among the particles. (4) Only the drag and
heat-transfer processes couple the particles to the gas. The momentum and
energy exchange between the two phases can be calculated from available
analytical solutions for the viscous flow field around a single sphere.

Finite-difference methods of solution of single-phase boundary-layer

equations have been studied for many years. A review of this work is given
in Ref. [22]. Flugge-Lotz and Blottner [23] developed an implicit
difference technique. They used a six-point scheme for the momentum and
energy equations and a four-point scheme for the continuity equation. This
finite-difference procedure was applied successfully to various studies of
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pure-gas boundary-layer flows. However, in the dusty-gas case, the nature
of the governing equations requires some changes which result in
considerable complexity. First, in addition to some new interaction terms
in the conservation equations for the gas phase, there is an extra set of
conservation equations for the particle phase. The partial differential
equations for the gas phase are of second order, while those for the
particle phase are of first order. Secondly, there is no correponding state
equation for the particle phase, since the particle phase has no analog of
flow pressure. In order to close the system of basic equations, the
y-momentum equation for the particle phase cannot be omitted as for the gas
phase. Finally, the flow properties of the particles present quite
different features in different flow regions. In the near leading-edge
region, very large velocity slip and temperature defect between the two
phases appear, whereas a quasi-equilibrium state can be reached in the
far-downstream region where the flow profiles for the two phases are almost
the same. Between these two regions, there is a transition region which is
characterized by a nonequilibrium flow. In general, the two phases in this
region have moderate differences in velocity and temperature across the
boundary layer. It is interesting to note that in the transition region,
there exists a special position along the flat plate, which is defined as
the critical point in this analysis. At the critical point, the tangential
velocity of the particles at the wall vanishes, that is, there is no slip
between the particles and the gas. This is due to the fact that in the
two-phase boundary layer, the gas decelerates from its freestream velocity
at the outer edge to zero at the wall and then the particles are retarded by
the gas. The velocity of the particles at the wall may be reduced to zero
provided the distance is long enough for the particles to adjust to the gas.
Of course, equalization of the gas and particle velocities at the wall does
not mean that the disparity of the two phases has died out because across
the boundary layer, equilibrium between the particles and the gas is still
not attained. Nevertheless, it can be said that at the critical point, the
two-phase system completes essentially the transition from a nonequilibrium
flow to an equilibrium flow, since the equilibrium state is reached first on

h the surface of the plate and this process is continued until the two phases
are in equilibrium across the whole boundary layer far downstream. As the
particles are slowed down, the density of the particle phase near the wall
increases. When the particle velocity becomes zero, the particles tend to

'- accumulate at the wall. In other words, deposition of the particles at the
wall may occur if there is no diffusion. Therefore, as discussed by Soo
[24,25], there are two possible situations when the particle velocity
decelerates to near zero:

(1) For large particles, their Brownian motion is neglected, the particles
slowed down at the wall will deposit and form a sliding layer (or bed of
particles). This compacted layer may build up or erode away, and even a
steady equilibrium condition may be achieved when the shear stresses in
this dense layer of the particulate matter and in the suspension mixture
are equalized. The velocity at which such a layer moves depends on the
materials and surfaces of the particles and the wall. Because of
deposition of the particle phase, the density of the particles at the

2



wall becomes very large. However, if the particle density is too high,
the present analysis will fail since the assumptions concerning the
interactions between the two phases or among the particles in this paper
can be considered correct just for a dilute gas-particle system.

(2) For small particles, the Brownian diffusion is significant in the region
near the wall, although the intensity of Brownian motion of the
particulate cloud is usually small across the boundary layer. The
density of the particle phase at the wall is then controlled by the
Brownian diffusion process. The layer of deposited particles may not
exist at all because the diffusion due to the Brownian motion prevents
the formation of a dense bed of particles. It is shown in Soo's
analyses that, if the Schmidt number of the particle Brownian diffusion
is of order unity or less, the whole two-phase system behaves like a
gaseous mixture and the density profiles for the particle phase reduces
to its original one as in the freestream. Soo studied only the
incompressible boundary-layer case. Marble [1,26] treated the
case of compressible flows and obtained a similar result. Some other
studies [17,18] on the compressible boundary-layer flow of a
gas-particle mixture came to the same conclusion. From the asymptotic
solution for the small-slip limit, it is found that the zeroth-order
approximation of the dimensionless density for the particle phase is the
same as that for the gas phase. This means that the loading ratio of
the particles is constant across the boundary layer and equal to its
original value in the freestream. Physically, in this quasi-equilibrium
flow region, the particles always remain attached or fixed to their
original gas mass and move together with the gas. Then the gas-particle
mixture behaves like a perfect gas with the modified properties. This
implies that the flow process in the small-slip region is mainly
diffusion-controlled for both the gas and particles. Therefore, in this
paper, it is assumed that, after the critical point, the particle
density is determined from the gas density and the loading ratio. Using
these considerations, the finite-difference schemes for the dusty-gas
boundary-layer flows can be constructed. In this analysis, the
finite-difference scheme developed by Flugge-Lotz and Blottner [22,23]
were employed for the gas phase. For the particle phase, a four-point
scheme was used. For comparison, the six-point scheme was used to solve
the x-momentum and energy equations of the particles, employing
additional boundary conditions obtained from the compatibility
conditions. After the critical point, very simple compatibility
conditions for the tangential velocity and temperature of the particles
can be derived: at the wall, the particles have the same velocity and
temperature as the gas.

With this finite-difference scheme, the flow properties of the dusty-gas

boundary layer over the entire length of a semi-infinite flat-plate were
calculated numerically. The flow profiles of u, v and T for the two phases
are presented at different distances from the leading edge. From these
results, it is shown that the boundary-layer flows of a dusty gas have
different characteristics in the three distinct regions. In the large-slip
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region, the particles have a little deviation from their freestream uniform
motion and then the differences in the flow quantities of the two phases are
quite large. While slipping through the gas downstream, interaction between
the two phases increases the gas velocity and temperature but decreases the
particle velocity and temperature as well. Thus, in the transition region,
the differences in the flow properties of the two phases are significantly
reduced. Of course, the particles and the gas are still in nonequilibrium.
In this region, the velocity slip and temperature defect are moderate
compared with those in the other two limiting regions. In the small-slip
region far downstream, the flow profiles for the particle phase become
almost identical with those for the gas phase, that is, the two phases
approach nearly equilibrium and the slip quantities are very small. In
fact, the only reason the particles do not actually attain the local gas
velocity and temperature is that slip is induced along the gas streamlines
by the gas retardation associated with thickening of the gas boundary layer.
In addition to the flow profiles of u, v and T, some boundary-layer
characteristic quantities of interest, i.e., the shear stress and
heat-transfer rate at the wall and the displacement thickness, are
calculated in this analysis. It is noted that owing to the presence of the
particles, the shear stress and heat transfer increase while the
displacement thickness decreases in the case of laminar boundary-layer
flows, since the interaction between the gas and particles causes an

K. increase in the gas velocity and temperature.

In this paper, the quasi-frozen flow properties in the near leading-edge
region and the quasi-equilibrium flow properties in the far-downstream
region were compared with the corresponding asymptotic values [27]. The
agreement was very good. For the finite-difference solution in the
nonequilibrium transition region, it is found that the results are
physically reasonable. Although it is not possible at present to make any
direct comparison between our finite-difference solution and other relevant
results, since there are no experimental or other analytical data available
for the nonequilibrium-flow region. Nevertheless, the fact that the
finite-difference solution in the far-downstream region agrees quite well
with the asymptotic small-slip solution provides confidence in the
difference solution for this transition region, since the boundary-layer
equations are parabolic, which is classified as a marching problem [30].
Thus, the solution procedure of finite difference begins with certain
initial profiles at or near the leading edge, then through the large-slip
region, the transition region, and finally ends in the small-slip region
downstream. It is clear that the finite-difference solution for the
small-slip region would not be correct if there were some mistakes in the
difference solution for the transition region.

The numerical study of boundary-layer flows in dusty gases provides a
good introduction to the dynamics of a two-phase system. The quasi-frozen
flow, nonequilibrium flow and quasi-equilibrium flow are all encountered and
analysed using the finite-difference method. The difference solution gives
the complete and exact information about modifications of the boundary-layer
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flows due to gas-particle interaction. Moreover, it provides a basis for
the experimental investigation of dusty-gas boundary-layer flows.

2. MATHEMATICAL DESCRIPTION OF COMPRESSIBLE, LAMINAR, DUSTY-GAS BOUNDARY-
LAYER FLOWS

The basic boundary-layer equations for steady, two-dimensional,
compressible, laminar, dusty-gas flows over a flat plate are given by [27]

Continuity:

ap'u* + p'v* = o (2.1)
6x* y*

Momentum:

ap*(u* x* + v* -*) : ". (,_u-) + $(u* - u*) u* p D (2.2)

Py* (Uy +y PU6..x* by ay*)

Energy:

p*c*(u* 6T* + v* 6T*) = (k* T*I + * + u *) 2

P( 5x y* & a (- Pp p

+ (v* - v*)2] u*D2p. D + -(T T*) u* Nu (2.3)
p * 3Pr p Cp *

State:

p* = p*R*T* (2.4)

for the gas phase, and

Continuity:

- P* u* + a p* v* C (2.5)

x-momentum:

u* v* 22 + ..p*(u- - u*) u* D (2.6)
P Pb* p b* P p T

y-moment um:

+ v* *)+ =-p*(v- v*) .." IL 0 (2.7)
p* Px* Py* P Pp
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Energy:

p * c~U* + v* u
_a - _ p c*(T* - T*) - Nu (2.8)

for the particle phase. In the equations above, the particle velocity-
equilibrium length * is

ps d. 2

The starred quantities in Eqs. (2.1)-(2.8) have dimensions. The
independent variables are the space coordinates x* and y* which are parallel
and perpendicular to the wall, respectively. The dependent variables are
the density p*, the velocity components u* and v* and the temperature T* for
the gas phase as well as the corresponding quantities p*, u*, vp and T* for
the particle phase. For the flat-plate boundary layer,pthepgas pressure p*
is constant and equal to its freestream value. Hence, in the dusty-gas
boundary-layer problem, there are eight simultaneous equations with eight
unknowns so that this system is closed. Of course, it is required that the
other physical quantities appearing in Eqs. (2.1)-(2.8) are known functions
of the flow variables. The normalized drag coefficient D and the Nusselt
number Nu can be expressed in terms of the slip Reynolds number and the
Prandtl number. Here, the normalized drag coefficient D is defined as

D = CD  (2.9)
COO

where CD and CD are the real drag coefficient for the flow situation under
consideration anB the drag coefficient from the Stokes relation. In this
analysis, only Stokes' relation is used and consequently D = 1.0 and Nu =
2.0. Regarding the thermodynamic properties, the following assumptions are
made: (1) The specific heats for the gas and particle phases (c* and c*)
are constant; (2) the Prandtl number of the gas (Pr) is constant; (3) the
viscosity coefficient of the gas (4*) has a power-law form with temperature.
Consequently, the expression for the gas viscosity is given by

S T* W (2.10)

where w is the power index for the viscosity coefficient.

It is advantageous to write the basic equations and relative expressions
in nondimensional form before the numerical computations are performed. For
the investigation of two-phase boundary-layer flows, it is convenient to
choose the velocity-equilibrium length *,* as the characteristic length, and
the following nondimensional quantities are defined,

6
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X =u* v = .,

U =-U* V = :*/e *.T L
u u p=M T*

(2.11)
- T*

u v /**e., A, Tp .p P p U** P

where the flow Reynolds number based on the particle velocity-equilibrium
length Re, is

p* u* X
Re = - e

Now, a nondimensional form of the boundary-layer equations results in

pu + _L pv = 0 (2.12)bx Y

1PC (u + v )= y + (d T + PP (up _ U) PD (2.13)
ax Y by 2  dT TY a~y -u

p(u L + v T) =JL 1 + L y L2 ( T ) 2 + Eci( y)7 + ECpp[(Up - u) 2

U y Pr 3y 2  Pr dT y by ~ (u

+ R (vp " V)2 pD +/_ P- (Tp - T)uPNu (2.14)

p = .1 (2.15)T

a p + = 0 (2.16)

7



p -Up p by u)pD (2.17)

u -!a +v 2! R= - ( -v)

P x p y

Up P-V + Vp ! = - (Tp - T)pNu (2.19)
x y 3Pr

where the gas Eckert number Ec, the gas Prandtl number Pr and the ratio of
specific heats for the two phases a are respectively defined as

c T*' k* c*

The viscosity relation in nondimensional form can be written as

11 = Tw (2.20)

In order to obtain a unique solution to the problem, it is necessary to
satisfy the boundary conditions. Inspecting the basic equations
(2.12)-(2.19), there are seven partial differential equations and two of
them are of second order. Therefore, nine boundary conditions should be
specified. If the partcle phase is in equilibrium with the gas phase in the
external flow, the nondimensional boundary conditions are given by:

(1) At the wall of the flat plate

u(x, 0) = 0, v(x, 0) = 0, T(x, 0) = Tw,
(2.21)

vp(xO) = 0

(2) At the outer edge of the boundary layer

u(x, =) 1, T(x, =) 1,
(2.22)

Up(x, 1) = 1, Tp(x, ) 1, pp(x, ) =

where the mass loading ratio of the particles p is

p*P.

p8



Besides, owing to the parabolic character of boundary-layer equations,
the initial profiles of the dependent variables are required across the
boundary layer at some point xo:

u(xo, Y) = uo(y), v(x O, Y) = VO(Y)

T(x0 , y) = To(y), P(xo, Y) = PO(Y) (.23)

up(xO, Y) : Upo(y), Vp(XO, Y) = vpo(y)

Tp(x 0 , y) = Tp(y), p (x o, y) = ppo(y)

At the initial position xo, the finite-difference solution procedure starts
and then proceeds downstream.

3. FINITE-DIFFERENCE SCHEMES AND RESULTING FINITE-DIFFERENCE EQUATIONS

The basic boundary-layer equations (2.12)-(2.19) with the boundary
conditions (2.21)-(2.22) and the initial conditions (2.23) can be solved
numerically using a finite-difference method. In this way, the
partial differential equations are approximated by finite-difference
equations and the flow field is divided into a rectangular grid or mesh.
Generally, either equal or unequal intervals can be used. In this report,
equal intervals in the x-direction and unequal intervals in the y-direction
were used in order to reduce the computation time (see Fig. 2). The step
size in the y-direction was increased in a geometric progression as

Ayn = K

Ay n-i

where K is a constant and it is set with a value slightly greater than
unity. When K = 1.0, the unequal-interval mesh reduces to an equal-interval
mesh. In the difference procedure, it is assumed that the flow quantities
are known at the grid points in the column (m) and unknown at the grid
points in the column (m+l). The computation starts stepwise downstream with
the initial profiles.

When the finite-difference scheme is employed, the derivatives are
replaced by difference quotients. There are numerous ways of constructing
difference quotients. For the sake of stability, implicit schemes, which
can be six-point or four-point, are used in this analysis [28].

For the momentum and energy equations of the gas phase, a six-point
difference scheme was used. With this scheme, six grid points (m, n-i),
(m, n), (m, n+1), (m+1, n-1), (m+1, n) and (m+1, n+1) are involved. Any
function w(x, y) and its derivatives are evaluated at a mid-point (m+O, n):

W = eWm+l,n + (l-e)Wm,n (3.1)

9



aW =1 (W+l, n  - W, n )  (3.2)

ax Ax m+, -Wmn

= 0 [Wm+1,n+ I + (K2_l)Wh, l,n - K2Wm+1,n_1]y (K +I1) Ay n

+ 1-0 [Wmn+I + (K 2-1)Wm, n - K2Wm,n-l (3.3)K+ K+I)A yn

62W 20K [Wm+-,n+ 1 _ (K+I)Wm+I,n + KWm+I,nIl
by 2 (K+1)Ayn2

+ 2(1-0)K [Wn+I (K+)W + KWm (3.4)
(K+1) 

Ayn 2

where the weighting factor 0 can be chosen as any value between zero and
unity. When 0 = 0.5, it reduces to the six-point Crank-Nicolson scheme
where the truncation error is of order (Ax2) [29]. When 0 takes the value

* of zero or unity, it gives the full explicit or implicit scheme,
respectively. The last two schemes involve only four grid points and have a

truncation error of order (Ax). But with respect to the variable y, all
three schemes above are of second order (Ay2), since the central difference

formula is used for derivatives in the y-direction.

A four-point difference scheme is applied to the gas continuity

equation. In this scheme, four grid points (m, n-1), (m, n), (m+1, n-i) and
(m+1, n) are included and all the values of the function w(x, y) and its
derivatives are calculated at a mid-point (m+G, n - 1/2):

W = 21[O(Wm+l,n + Wm+l,n-1) + (l'O)(Wm,n + Wm,n-1) ]  (3.5)

6= - . [(Win+l,n - Wm,n) + (Wm+l,nI - Wm,n.l)] (3.6)
ax 2Ax

ow W =y - (W m+l,n - Wm+l,n_1) + 1-0 (Wm,n - Wm,n_1) (3.7)by - Ayn I  AYn-I

When 8 = 0 or 0 = 1 in the above formulae, the truncation error in the

x-direction is of order (Ax). When 0 = 0.5, the scheme is known as the
four-point Wendroff scheme and the truncation error in the x-direction is of

second order (Ax2) [29]. However, from experience in the present analysis,

the Wendroff scheme may produce an oscillation in the normal velocity of the

10



gas phase. It was found that this oscillation problem can be avoided by
using e = 0.75, which produces a discretization error of order (eX1*5). In
the y-direction, this four-point scheme has a truncation error of order
(Ay2) as in the six-point scheme.

For the particle phase, due to the stability requirement, the
y-derivatives are approximated by backward difference quotients instead of
the central difference quotients which are used in the above schemes for the
gas. Then, another four-point difference scheme for the particles is
constructed as follows. The function w(x, y) and its derivatives are
estimated at the point (m+e, n). The derivatives, both in the x- and
y-directions, are replaced by backward quotients.

For the x-momentum, energy and continuity equations of the particles,
the grid points (m, n), (m, n+1), (m+1, n) and (m+1, n+1) are involved and
the difference scheme is

W = OWm+ln + (l-0)Wm,n (3.8)

NW _ (W m+1, n  - W,n) (3.9)
x Ax

6W .0n (W m+l,n+ I - Wm+ln) + 1- (Winn+i - Wm,n) (3.10)

by Ayn AY n

For the y-momentum equation, the grid points (m, n), (m, n-i), (m+1U, n)
and (m+1, n-I) are involved and the difference scheme takes another form for
the y-derivative instead of Eq. (3.10)

y=- ea (Wm+l,n - Wm+l,n-i) + 1-  (Wm,n - Wm,n-l) (3.11)

6y 4yn-l Ayn- 1ni

The function w and the x-derivative 8W/bx have the same forms as Eqs. (3.8)
and (3.9).

Similarly, when e is equal to zero or unity, which represents,
respectively, the explicit or implicit scheme, the above four-point schemes
(3.8)-(3.11) reduce to three-point schemes. These schemes have a truncation
error of first order (Ay). For stability consideration, as mentioned
before, the value of 0 is chosen to be 0.75.

With the above formulae, the finite-difference equations for
compressible, laminar boundary-layer flows of a dusty gas over a
semi-infinite flat plate are given by:

(1) The momentum equation of gas phase,

A I u D n 2 , .. - ) ( . 2
An Um+l,n+ + n Um+l, n  Cn Um+l,n I = Dn (n = 2, 3,...N-) (3.12)
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-U-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ rUPT P*W w v u rr rr r r w - -=*p- ~P ~ l?2'l ly W~ yx '3r MN

where

an (pv - p'T ) m+ E)n -Cn rnO,n

1
Bn = (Pu)rn+e,n + an(K 2-1)(pv - i'T y)m+e,n + cn(K+l)pN+e,n

+ OAx (Pp PD) m+1, n

C, = -anK 2(pV - i'T Y)m+O,n - cnKpm+8,n

On = (Pu)m+O,n - (1-0)6x(P )m,nlum,n - b,,(Pv - i,'Ty)m+e,n~um,n

+ dnpin+E),n A2U m,n + t~x(PpupiD)m+e,n

(2) The energy equation of gas phase,

A2 T+B2 T2 T2
An Tm+l,n+l + n T~l,, + Cn Ti+i,n..i D n (n =29 39...N-1) (3.13)

where

n~,(Pv - ~ y)m+e,n - cn(gL m+0 n

2 2 +a 21 (pV +
Bn (Pu)m+e,n + n(K-l WP Ty)m+ 0,n+ Kl ( -+Pr Y e~ Pr(~)()~~

+ OUx Q-~ P PNu )m+I, n

Cn =-an, 2 p Pr Yz m+O,n -n Pr m+e0 n

n [( Pu) 0n (i-O)Ax(-L.. Pp PNu nm ]Tn, nrn+~,n3Pr

n b,(Pv )m 0,L T ATm + dn(JL-)m+O nAIm~n
Pr Y m+n mn Pr

+Ax{jEc P(u y)2 + EcPPuP U- u 2 +L. 1 v V p V)2]pD + _ ppulm+e,n
+ ~Re. 3P r PTL

h 12



2
For the coefficient Dn, the term (vp - v)2/Re, is a small quantity and can

be neglected. In all the above coefficient expressions, some parameters are

given by

eax b = (l-8)tx
an (K+1)Ayn' (K+I1)Ay n

Cn = 28 K x = 2(1-8)K U

(K+I)Ayn 2 (K+1)Ayn
2

Awm,n Wm,n+l + (K2-1)Wm,n - K 2Wm,n-1 (3.14)

A2Wm,n Wi,n+ I - (K+I)Wm,n + KWm,n-1

(W) = m,n+1 + (K2-1)Wm, n - K2Wm n_1
Wym,n (K+I)Ay n

where the function W represents the flow properties such as velocity,

temperature, density, etc.

(3) The state equation of the gas phase:

S 1 (n = 1 2, ,N) (3.15)

m+l ,n

(4) The continuity equation of the gas phase:

(PV)m+l,n = (Pv)m+l,n-1 v)mn Pv)m,n-I

IA~n

- 2yn'I [(Pu)m+l,n - (PU)ri,n + ( PU)m+l n-1 - (Pu)m,n-l] (n = 2, 3,.. .N)
~29Ax

(3.16)

(5) The x-momentum equation of the particle phase:
i 3 3 3

An u+ Bn u = Cn (n = 1, 2,...N-1) (3.17)
n pm+l,n+l n m+1,n

13
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where

A 3  OAn 7Aj*n Pm+eO,n

Bn 3 u O v + etx( PD)m+l,nn Pm+O,n Ayn Pm+e, n

C 3 - (~~ v + [u + 1e~ Vm+,.1AYn Pm-s-,n Pm,n+l + Pm+ O,n + Ay n mOn

-1-) x ( P) m, n ]UpM + tAx(uikDm+O,nmn

(6) The y-momentum equation of the particle phase,

An 4vpm + B 4 vp+n C If (n = 2, 3,..., N) (3.18)

where 4
n Prn+O,n ynl vPm+eO,n +EA(P~+

B 4 U
Ayn-1 ~~

=n [u PM+n x(i-e m+O~ - (1-e)Ax(PD)m,nlvpm~

+ [(i-O)Ax V e V

(7) The energy equation of the particle phase,

5 55
An T Pml l+ Bn T P ln (n =1, 2, .. ,N-i) (3.19)
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where

A5 _ AXAn - v
Ayn Pr+ e,n

AY n n

B ~ ~ ~ ~ Tm 5 u A mOnP+Gn+' Ax P )m+1nu~+5 - 4.
=n AY( n tx v Pm+ e,n ]TPmn+i + [u Pm+On + AY n V Pm+E

1- 0-) Ax(.. PNu) n ]Tp + AX( T gNu )m+ 0,n

(8) The continuity equation of the particle phase,

Al n plnlp + Bn pp 6 (n = 1, 2, ... , N-1) (3.20)

where

A6 = eAXAn An Vpm+ G,n

62
Bn 2 u + (1-20)u + (vpm+,n+ - 2v

Pm+l,n Pm,n Ay--n--" 2Vpm+l,n

+e(l- O)t (v )
Ayn (VPm,n+1 - 2vPm,n

CR = _(1- nAx v ]P~mn + [(2el)u + 2(l-)un LAyn  Pro+e,n 1PP,n+1 Pm+l,n 8)Upm,n

0(1-e) x 2Vpm+l,n " V2 )PP m,R

n Ayn nrpmnn~ 2Vpmn

Using the finite-difference equations in the form (3.12)-(3.20), a
stable and convergent numerical solution to the dusty-gas boundary-layer
equations was obtained when x is smaller than xcri. After the critical
point (x > xcri), quite simple compatibility conditions were derived for the
particle velocity and temperature. These conditions provided supplemental
boundary conditions at the wall so that the six-point scheme could be used
for the x-momentum and energy equations of the particles when x ) Xcr i . At
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the wall (y = 0), with the boundary conditions u = 0 and Vp = 0, Eqs. (2.17)
and (2.19) become

U -(pD)w (3.21)

6Tpw

pw y 3Pr (Tpw Tw)(LNU)w (3.22)

These two equations, Eqs. (3.21) and (3.22), are termed as compatibility
equations from which compatibility conditions can be derived. From Eq.
(3.21), it is known that, as x increases, the particle velocity at the wall
decreases until it becomes zero. The position of the critical point is
determined by

Upw(xcri) = 0 (3.23)

After the critical point (x ) xcri), the two phases have zero velocity at
the wall and then the drag vanishes (Dw = 0). Thus, for x ) Xcri, Eq.
(3.21) leads to

upw =0 (3.24)

Substituting Eq. (3.24) into Eq. (3.22) yields

Tpw =Tw (3.25)

Equation (3.25) is valid for x ) Xcri, too. Equations (3.24) and (3.25)
mean that after the critical point the particles and gas are in equilibrium
at the wall. Now, concerning the tangential velocity and temperature of the
particles, there exist two boundary conditions: one is at the wall and the
other is at the outer edge of the boundary layer, as in the case of the gas
phase. For the normal velocity, however, no such simple compatibility
conditions, such as Eqs. (3.24) and (3.25), can be derived.

With the six-point scheme, the x-momentum and energy equations of the
particle phase are replaced by the following difference equations:

(1) Momentum:
7 7 7 7

An Up n u + Cn7 u D n (n 2, 3, ... , N-i)n pm+1,n+l n Pm+1,n UPm+l,n-1 (3.26)

where

7
An = anv Pm+e,n
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B7 = U + a (K2-1)V +n UPm+O,n an(K2-1 + (OAx(P)m+l, n

7
C = -a K2 V

Pm+O,n

n  [Upm+n - (1-O)4x(PD)m,n]upm - bVpm,n +Ax(u)m+e, n

(2) Energy:

8 m+l,+ B 8 Tpm+ C Tm= Dn (n = 2, 3 .. , N-i)An Pmln+l n+ B n  ,n nPm+1 ,n-1 n(.7AnT + 8 T 8 8(3.27)

where 8en = anvpm+O,n

8Bn = u + an(K 2-1)V + eAx(-.,--ar pNu )m+1 ,n
Pm+O,n Pm+O,n + 3Pr

C= -a K2v
n = nKPm+O,n

8 iDn = [upm+e, n - e) Nu )m,nTpmn - bnV pm+e ATPm
n3Pr Pm+O n P

+ Ax(.-' T Au

Therefore, when x > X ri, the difference equations are composed of Eqs.
(3.12), (3.13), (3.15), (3.16), (3.18), (3.26) and (3.27) with the
assumption that the particle density is determined by pp = op. The detailed
derivations of all the finite-difference equations above are given in
Appendices A and B.

It is noted that the boundary-layer equations (2.12)-(2.19) are a
coupled nonlinear partial-differential system. To avoid the coupling and
nonlinearity, in the process of discretizing every conservation equation,
only one corresponding variable appears as an unknown in the resulting

difference equation and the difference expressions for the products of the
unknown variables, functions or derivatives are chosen such that the unknown
variables appear linearly in the products. This procedure leads to a linear

system of algebraic equations which are not coupled. As pointed out by
Blottner [22] the coupling between the equations results in a tridiagonal
matrix which is somewhat more complicated to solve than in the uncoupled
case. In addition, for linear algebraic equations, there are several
effective methods of solution available. For example, the Thomas algorithm

is a very powerful and convenient technique to solve the linear equations
with the tridiagonal matrix of the coefficients.
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4. METHODS OF SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS

The methods of solution depend upon the characters of the
finite-difference equations. For the six-point scheme, the resulting
difference equations constitute the system of simultaneous algebraic
equations with a tridiagonal matrix of the coefficients. Advantage can be
taken of this tridiagonal form of the coefficient matrix to solve the
algebraic equations by use of the Thomas algorithm [30]. With the Thomas
algorithm, the solution is obtained by

W1 n_ n m+l n+1 (4.1)
n

where
El GI

El A' Fi .Bi -Ci n-i, Gi=Di -Ci n-i
n n' n n n ,Fi n n n F-

n-1  n-1

The recurrence relation, Eq. (4.1), can be used to solve difference
equations (3.12) and (3.13), or (3.26) and (3.27). Correspondingly, W, = u,
W2 = T, W7 = Up and W8 = Tp.

By using the following procedure, the flow profiles can be determined:

(1) With the boundary conditions at the wall, calculate quantities E1 , F'
G1 from the wall towards the outer 

edge.

(2) With the boundary conditions at the outer edge, calculate the flow

properties Wi from the outer edge towards the wall.

After the gas temperature Tm+ln is known, the gas density Pm+1,n can be
calculated directly from the state equation (3.15). Then, starting at the
wall and using the gas continuity equation (3.16), the normal velocity

vm+l,n can be obtained.

When x < xcri, the differential equations for the particle phase are
discretized using the four-point difference schemes. The methods forsolving the difference equations (3.17) to (3.20) are not difficult. After

starting either at the wall (only for the y-momentum equation) or at the

outer edge of the boundary layer, the calculations proceed consecutively
from one grid point to another in recursion, until the whole boundary layer
has been traversed:

SCi Ai W
WM+in n n m+l,n+l (i = 3, 5, 6) (4.2)

B
n
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i C' -B'W 1

Wm+in - n n m+l,n-1 (i = 4) (4.3)
A'n

where W3 = u W 4 = v W = Tp and W6 = pp After the critical point
(x > Xcri), t e x-momen um and energy equations of the particle phase can be
discretized with the six-point scheme and then solved by the Thomas
algorithm, as for the gas phase.

Before solving the difference equations numerically using the methods
described above, some considerations are required:

(1) How to evaluate the coefficient matrix elements;

(2) How to give the boundary conditions in a form suitable for the numerical
computation;

(3) How to obtain the initial profiles;

(4) How to determine the value of xcri, the nondimensional coordinate for
the critical point.

First, the finite-difference qquat.ionq can be solved provided that the
values of all the coefficients Al, B1  C and D are known. However, fromn' n'1 n n
the expressions of these coefficients, it is seen that they depend on
unknown values of the variables at the grid line (m + 1), since the
difference scheme is an implicit one. This difficulty can be surmounted by
using an iteration procedure. Of course, the iteration technique increases
the computation time very much. The other way to overcome the difficulty is
to use a linearization approximation: the quantities appearing in the
coefficients are evaluated at the previous grid line (m) if these quantities
are still unknown at the grid line (m + 1). Otherwise, they take on their
updated values. In this analysis, this linearization approach was employed,
since it is easier to program and requires less computer storage. Of
course, it is less accurate compared with the iteration approach. However,
satisfactory accuracy can be achieved by reducing the step size.

Second, in order to solve the system of simultaneous algebraic equations
at every new grid line (m + 1), it is necessary to have the boundary
conditions in a suitable form. In this analysis this is straightforward,
since there are no derivatives involved in the boundary conditions of the
Dirichlet type. In the finite-difference scheme, the boundary conditions at
the wall, Eq. (2.21), are written as

um+1,1 0, Vm+1,1 = 0, Ti,n = Tw9
(4.4)

v =0Vpm+l , 1 =
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Similarly, the boundary conditions at the outer edge, Eq. (2.22), are given
in the form,

un+IN 1, Ti+l,N = 1

(4.5)
Upm+1,N ' T Pm+l,N 1' PPm+I,N

Here, concerning the outer-edge boundary conditions, another difficulty
arises: How to select the number N, the maximui value for the number of
grid points at the column (m+1). In other words, in the computation
process, it is required to know how far to calculate the flow variables
across the boundary layer. In order to guarantee that the value of N used
represents the freestream condition, one can specify a large number N nax for
the grid points at the last grid line (mmax) far downstream, where the
computation terminates. For all the previous grid lines (0 < rn < mmax), the
same number Nmax is used to define the outer edge of the boundary layer.
This method is direct but inefficient, since it needs more computation time.
There is another approach in which a special value of N is chosen for a
given grid line (in). In the latter method, N is determined as follows
[31]:

(1) It is assumed that Nm+1 at the new grid line (m + 1) is equal to Nm, the
number of grid points at the previous line (m).

(2) The finite-difference equations are solved with the assumed Nm+ I and the
values of the flow quantities at the last two consecutive grid points,
Wm+l,N_1 and Wm+1,N, can be found.

(3) The difference between Wm+1 N-i and Wm+lN is compared with a certain
small quantity E. If the condition of smooth conjugation

lWm+I,N - Wm+lN-1I < 6 (4.6)

is satisfied, the selection of Nm+ 1 is correct and the computation can
proceed to the next step.

(4) If the condition (4.6) is not fulfilled, it is required to assume Nm+1 =

Nw + I and then to obtain the new values of Wm+1,N.1 and Wm+lN- If the

condition (4.6) is not fulfilled again, it is necessary to increase Nm+1E with unity, and so forth, until the smooth-conjugation condition is
satisfied. With this method, the number of grid points across the
boundary layer varies as the thickness of the boundary layer increases.

J.N Next, in order to initiate the computation, the initial flow profiles
must be given. In most pure-gas boundary-layer studies, the initial
profiles are obtained from similarity solutions. For dusty-gas
boundary-layer flows, however, no analogous similarity solutions exist. In
previous work on finite-difference solutions for incompressible dusty-gas
boundary-layer equations, the initial profiles were specified in two ways:
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(1) The Blasius similarity profiles were chosen for the gas phase and
uniform profiles for the particle phase [14].

(2) The initial profiles were obtained by using an integral method [13,
15].

It is well known that all the integral methods for boundary-layer analysis
do not attempt to satisfy the basic equations at every point; instead, they
guess or assume a suitable expression for the velocity and temperature
profiles and satisfy the boundary-layer equations only on an average
extended over the thickness of the boundary layer. In general, the initial
profiles obtained from integral methods are quite approximate. From the
studies of the behaviour of dusty-gas boundary-layer flows near the leading
edge [17, 18, 27], it is also known that the similarity profiles for the gas
phase and the uniform profiles for the particle phase are the zeroth-order
approximation in the large-slip region. The zeroth-order asymptotic
profiles are physically reasonable and were tested in this analysis. More

accurate initial profiles up to the first order can be obtained from the
asymptotic large-slip solution to the compressible laminar boundary-layer
equations for the gas-particle flow over a semi-infinite flat plate by using
a series-expansion method [27]. Thus, it is suggested here to employ the
first-order asymptotic solution as the initial profiles. However, in this
approach, it is required to obtain the asymptotic solution first and then to
solve the difference equations starting at a given initial position which
may be very near the leading edge but cannot be exactly at the leading edge,
since the asymptotic solution involves a singularity at the leading edge.
Wu [32] once proposed the following type of initial profiles at the
leading edge in pure-gas cases:

(1) The tangential velocity u* and temperature T* have their freestream
values at all the grid points across the boundary layer except at the
wall.

(2) At the wall, the tangential velocity u* is zero and the temperature T*
' W

corresponds to the wall temperature.

(3) The normal velocity v* is assumed zero at all the grid points.

Clearly, this method is very advantageous for starting numerical computation
without any preliminary calculations of initial profiles. Flugge-Lotz and
Blottner [23] studied the possibility of using the Wu-type initial profiles
in pure-gas boundary-layer cases and concluded that the Wu-type of initial
profiles can give reasonable results if the proper mesh sizes are chosen.
In the dusty-gas case, similar initial profiles can be set up by using
Wu-type profiles for the gas phase and uniform profiles for the particle
phase. Soo [24] applied such initial profiles to his analysis of
incompressible, laminar boundary-layer flow of a dilute particulate
suspension. The profiles are termed here as the extended Wu-type. In this
report, the above three different types, i.e., the first-order
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asymptotic-type, the zeroth-order asymptotic-type and the extended Wu-type,
were used respectively as the initial profiles in order to compare them.

As mentioned before, the asymptotic types of initial profiles can be
obtained from the large-slip solution [27]. However, because of the
different notations, certain relations must be established with the
asymptotic large-slip solution as follows:

X : (X)asy, y = (V2x n)asy

u = (U)asy, v =(-L (TO - f))asy T = (T)asy ,  P P)asy
2x ay( (4.7)

Up=asy, = .(L x ( ' + f2) ._ fPu p n -- p Fx 2x 2x 5 asy

Tp = (Tp) asy' (PP) asy

Similarly, a set of relations can be written for connecting the
finite-difference solution with the asymptotic small-slip solution. In this
analysis, nondimensional slip quantities for the particle phase are defined
as

us = up - U, vs  v p v, Ts =T -T (4.8)

The corresponding relations are

x - (x)asy, y - (V2 n)asy
/1+ ~(4.9)

us = (UV) , Ts = (Ts)
asy V1+ /2x asy asy

These expressions are useful when comparing the finite-difference solution
with the asymptotic small-slip solution. In Eqs. (4.7) and (4.9), the
subscript 'asy' denotes the asymptotic solution.

Finally, as pointed out earlier, after the critical point (x ; xcri), it
is assumed that the particle density is equal to the gas density times the
mass loading ratio of the particles. It is equivalent to assume that there
is no accumulation of particles on the surface of the plate and the flow is
then mainly diffusion-controlled for the particle phase as well as for the
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gas phase. In addition, after the critical point, quite simple
compatibility conditions (3.24) and (3.25) are valid. The value of Xcri can
be determined from the compatibility equation (3.21) and the condition
(3.23). Equation (3.21) is an ordinary differential equation and the
solution upw(x) can be obtained numerically or analytically. For instance,
in the case of the Stokes relation (D = 1.0), Eq. (3.21) can be integrated
analytically as

u pw(X) = i - Pwx  (4.10)

where upw(O) = 1 is taken as the initial condition at x = 0. From the

condition Upw(Xcri) = 0, Eq. (3.23), the critical value Xcri can be
determined, say, for the Stokes case

Xcri : 1 (4.11)

when Tw = 0.5 and w = 0.5, Xcri = /2 or X*ri =/ 2 X*. If p* = 2.5 g/cm3,
d* = 10 m, T* = 300 K (or i* = 1.80xI0 -  NS/m 2 ) and u* = 500 m/S, the
typical values of relaxation parameters are obtained as: X* = 0.386m and

* X*ri = 0.546 m.

5. RELATIONS FOR SHEAR STRESS, HEAT TRANSFER, AND DISPLACEMENT THICKNESS

Once the gas flow profiles across the boundary layer are determined,
some boundary-layer characteristics of practical interest can be calculated.
The important quantities describing the behaviour of boundary-layer flows
are shear stress at the wall, heat-transfer rate at the wall and
displacement thickness. They are given in dimensional form as

(1) Shear stress at the wall:

u* = K(5.1)
ay* w

(2) Heat-transfer rate at the wall:

* 6w( k(. ) (5.2)

(3) Displacement thickness:

6* = f (1 )dy* (5.3)
0 p u
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The corresponding nondimensional characteristic quantities are defined as

'w = t Ve. (5.4)

p*, u*2

4w =  Ae. (5.5)

*u 3

O 5* (5.6)

Substituting the nondimensional transformations (2.11) into the expressions
(5.1)-(5.3), the nondimensional boundary-layer characteristics, Eqs.
(5.4)-(5.6), can be written as

T-(WJ (5.7)
by w

w - " (L) (5.8)
Pr Ec byw

6= f (1 - pu)dy (5.9)
0

For numerical computations, it is necessary to express the above
relations in finite-difference form. By means of polynomial fitting, the
gas velocity u and temperature T near the wall may be expressed with

sifficient accuracy as

u = au + buy + cuy 2 + duy 3  (5.10)

T = aT + bTy + cTy 2 + dTy 3  (5.11)

faking the derivatives of the above variables with respect to y and setting

y = 0, the formulae for shear stress and heat-transfer rate at the wall are
obtained as

T-w Iwb,  qw bT

"q" Pr Ec

The values of hu and T can be determined by evaluating Eqs. (5.10) and
(5.11) at the four grid points nearest the wall and solving the resulting

%. eqjaioi)ns. Then the shear stress and heat-transfer rate can be given by the
"Ifollowing xpressions ('e Appendix C):

Va
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•__ __ __ __u 3  +u 4
- (K2 + K + 1) [u2  + (5.12)1W AW K 2AyI  ["2 - K(K + 1) K(K2 + K + 1)2

• Nw (K2 + K + 1) [(T2 - T) -T3 - TI + T4 - TI (5.13)Pr Ec K2AyI  K(K + 1) K(K2 + K + 1) 2

where the subscripts 1, 2, 3, 4 denote the four grid points nearest the wall

and u, = uw = 0, T, = Tw .

To calculate the nondimensional displacement thickness 6, a three-point
difference formula of integration was used. The formula can be applied to a
nonequidistant step size [33]

N-i -I 3K + 2 F + 3K + I F1
6 2 6 [ +3 n-i K n K(K + 1) Fn+1 (5.14)

2Ki

where F = - pu, and the subscripts n-i, n and n+1 represent three

consecutive grid points at a given section.

6. COMPUTER PROGRAM

The computer program FDBLEP for solving boundary-layer equations of a
dusty gas over a semi-infinite flat plate was written in Fortran language on

a Perkin-Elmer computer system at UTIAS (see Appendix 0).

Only the main features of the calculation procedure will be reviewed

here. A rectangular-grid system indicated in Fig. 2 was adopted, with the
m-lines in the y-direction (i.e., normal to the plate) and the n-lines in
the x-direction (i.e., parallel to the plate). The y-axis is designated as
the initial line for the in-lines and the x-axis for the n-lines. In the
finite-difference procedure, the flow profiles along some m-line (say, the
initial line n = 0) are known and the flow parameters along the (m+1)-line

have to be determined.

Given below are the main steps in the computation procedure:

(1) Compute Um+1,n.

Using the known solution at the in-line (linearized conditions) and the

boundary conditions on the (m+l)-line, the new tangential velocity of
the gas at all the grid points of the (m+l) line, u"n+1,n, are

calculated.

(2) Test for the outer edge of the boundary layer while computing u. After
the boundary layer has been traversed, the two consecutive values of u,
tm+1 N-i and Umi,N, are compared to see if the difference between them

is less than some small positive number E. The value of E is
determined by the desired accuracy of the computation.
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(3) Compute Tm+ ,n.

Using the new values of uri+l1n with the other linearized conditions,
the new gas temperatures T'in across the boundary layer are
calculated.

(4) Compute Pm+l,n"

Using the new values of Tm+l,n, the new gas density profile is

calculated directly.

(5) Compute Vm+1,n .

Using the new values of un+1,n and Pm+1,n, the new normal velocity of
the gas vm+l,n across the boundary layer are calculated.

(6) Compute upm+l,n.

Using the new tangential velocity profile um+l,n for the gas phase and
the linearized velocity profiles u and v Pm for the particle

phase, the new tangential velocity profile of the particles is
computed.

(7) Compute vp nPm+l ,n*

Using the new values of vm+1,n and upm+I n with the linearized values

of vP , the new normal velocity profile for the particle phase isn

computed.

(8) Compute Tpm+1,n.

Using the new values of up + v and Tm+l,n with the values of" 1 ',n  V m l n

T at the previous line tm, the new temperature profile for the
p

particle phase is computed.

(9) Compute PPm+1,n"

Using the newvalues of upm+ln and v with the values of up, Vp,Usn4h e vle n pm+l,n

pp at the previous line (m), the new particle density profile is
computed. However, when x > xcri, the new particle density profile
can be obtained by setting PPm+1 ,n OPm+l,n"

(10) Compute Tw"

Using the first four values of velocity for the gas phase nearest the
wall, i.e., m+1 1, 'In+1,2' "m+1, 3 and ur+1,4, the shear stress at the
wall is calculatel.
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(11) Compute 4w

Using the values of gas temperature at the four grid points nearest the
wall, i.e., Tm+li,, T n+1,2, Tm+1,3 and Tm+l,4, the heat-transfer rate
at the wall is calculated.

(12) Compute 6.

Using the density and tangential velocity profiles for the gas phase,

Pm+1,n and um+l,n, the displacement thickness can be obtained by
integration.

To advance the computation from the (m+l)-line to the (m+2)-line and so on,
the same procedure (1)-(12) is repeated until the desired value of x is
reached. The flow diagram for the basic computer program is shown in Fig.
3. It is noted that the order of solving the difference equations is
important. The equations for the gas phase are solved first where the
momentum and energy equations must be solved before the continuity equation.
Then the equations for the particle phase are solved and the energy and
continuity equations must be solved after the momentum equations.

7. NUMERICAL RESULTS AND DISCUSSIONS

The present finite-difference technique was used to solve the
compressible, laminar boundary-layer flows of a dusty gas over a
semi-infinite flat plate. The difference solutions for the three flow
regions were obtained: the quasi-frozen flow region near the leading edge,
the nonequilibrium flow region and the quasi-equilibrium flow region far
downstream. The asymptotic solutions in the two limiting regions (the
large-slip and small-slip regions, respectively) were also solved
numerically in order to independently verify the validity of the present
implicit finite-difference scheme when it is applied to a gas-particle
mixture.

In this analysis, the following set of parameters was chosen so that the
finite-difference results could be compared with the asymptotic solutions by

Singleton [17]:

(1) The power index of the gas viscosity is equal to 0.5 (w = 0.5).

(2) The Prandtl number of the gas is equal to unity (Pr = 1.0).

(3) The Eckert number of the gas is equal to unity (Ec = 1.0).

(4) The ratio of specific heats for the two phases is equal to unity (a =

1.0).
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(5) The mass loading ratio of the particles is equal to unity ( 1.0)

(6) Stokes' relation applies for the interaction between the two phases (D
1.0 and Nu = 2.0).

(7) The nondimensional temperature at the wall is equal to 0.5 (Tw = 0.5).

The flow in the large-slip region was considered first. The initial

profiles at xo = 0.005 were obtained from the first-order asymptotic
solution. The computation proceeded from xo 

= 0.005 to x = 0.505 with mesh
parameters AX = 0.001, Ay, = 0.01 and K = 1.05. The flow profiles for the
two phases at x = 0.055, 0.105 and 0.305 are plotted in Figs. 4 to 6. As
these results show, there is a very large slip between the particles and the
gas in this near-leading-edge region. Then the flow is quasi-frozen. This
situation can be explained as follows. In the freestream, the gas and

particles are in equilibrium, that is, they have the same tangential
velocity and temperature while their normal velocity is equal to zero. At

the leading edge, due to viscous effects, the tangential gas velocity
decreases from its freestream value at the outer edge to zero at the wall
and the gas temperature also changes from its freestream value at the outer
edge to the wall temperature at the wall, whereas the normal gas velocity

acquires quite a large value. The particles, however, cannot accommodate
these rapid changes and tend to keep their original state of motion in the
freestream. It takes some time for the particles to attain their

equilibrium with the gas. The relaxation process of the particles occurs
throughout the velocity-equilibrium length X*. This two-phase slip
phenomenon implies that the viscous relaxation length for the gas is much
shorter than the relaxation length for the particles owing to the drag and

heat-transfer interactions between the two phases. By comparing the
finite-difference solution with the asymptotic solution in the large-slip
limit, it is seen that excellent agreement is obtained when x < 0.1.
Therefore, the asymptotic large-slip solution is valid when x < 0.1.

Next, the dusty-gas boundary-layer flow in the nonequilibrium region was
studied. The first-order asymptotic profiles at xo = 0.05 were taken as the

initial profiles. The grid parameters were Ax = 0.001, Ayj = 0.03 and K =

1.05. The flow profiles of the two phases at x = 0.55, 1.05, 2.05 and 5.05
are shown in Figs. 7 to 10, respectively. The numerical results indicate
that the slip between the particles and the gas diminishes gradually as x
increases. However, in this transition region, the particles still have

moderate slip against the gas and then the two-phase flow is characterized

by nonequi librium. At the critical point (x = xcri), the particles achieve
equilibrium with the gas at the wall. After that point, the two phases are
in a state of near-equilibrium. From the experience of this analysis, after
the critical point, the four-point scheme for the particle continuity
equation became unstable. It was necessary to seek an appropriate treatment
of the particle density. As mentioned before, based on the fact that the
gas-particle mixture acts like a perfect gas with the total density (l+p)p*
in the small-slip limit, it is assumed that the particle phase has the local
density p*, which means that the mass loading ratio of the particles
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is constant across the boundary layer. Of course, this assumption
concerning the particle density for x > xcri may cause some inaccuracy in
the prediction of the flow properties in the nonequilibrium region since
this density distribution represents the zeroth-order approximation in the
small-slip limit. Fortunately, a near-equilibrium state between the two
phases is essentially reached after the critical point, as the difference
solutions show. The effect of the particle density on the flow properties
takes place only through the interaction terms. Under the near-equilibrium

condition, these interaction terms will become small of second order
compared with the viscous terms. Therefore, this approximate treatment of
the particle density is acceptable. It provides an approach to solve the
dusty-gas boundary-layer flow in the region x > Xcri. More discussion about

the particle density is given in Appendix E. In Figs. 7 to 10, it is also
noted that the relaxation of the tangential velocities of the two phases is

terminated effectively at about x = 5.0 as well as the temperatures. In
contrast with tangential velocity, there is still an apparent difference
between the normal velocities of the two phases up to x - 20.0. It seems to
mean that the relaxation of vp and v occurs over a greater length than that

for up and u. In fact, the main reason is that only one mechanism, i.e.,
the interaction between the phases, acts in the relaxation process for u_
and u while two mechanisms, the interaction between the phases and the
continuity requirement, both play an important role in the process for vp
and v.

For the finite-difference solution in the small-slip region, the
computation was started at x0 = 5.05 and continued until x = 20.05. The

initial profiles were obtained from the finite-difference solution in the
nonequilibrium region. All the mesh parameters used in this calculation

were the same as those in the transition region. The numerical results for
x = 10.05, 15.05 and 20.05 are shown in Figs. 11 to 13. It is seen that the

quasi-equilibrium state between the particles and the gas has already been
reached. In Fig. 14, the particle slip quantities us, vs and Ts obtained
from the difference solution are compared with those from the asymptotic

small-slip solution. There is very good agreement between these two
solutions. The comparison between the finite-difference solution and the
asymptotic series-expansion solution in the small-slip region indicates that

the finite-difference scheme presented in this paper has proved to be a
useful method for studying dusty-gas boundary-layer flows and that the
asymptotic small-slip solution is valid when x > 10.

It is found from Figs. 4 to 13 that the tangential velocity of the

particles in the boundary layer is always greater than that of the gas and
it decreases monotonically from its freestream value to the value at
equilibrium with the gas as one advances downstream from the leading edge.
Regarding the normal velocity, however, the situation is a little different.
Near the leading edge, the normal velocity of the particles is smaller than

that of the gas, i.e., vp < v. With increasing distance x, the normal
velocity of the particles becomes greater than that of the gas, which
happens first near the wall and then extends over the whole thickness of the
boundary layer. However, with increasing x, say x 20, the normal
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velocities of the particles and the gas reach an equilibrium value as for
the tangential velocities. This difference can be explained as follows.
The normal velocities for the two phases are equal to zero in the freestream
and induced to some values in the boundary layer whereas the tangential

velocities for the two phases are equal to the freestream value and decrease
in the boundary layer. In the boundary layer, the gas tangential velocity

at the wall vanishes and its distribution across the boundary layer is
similar to the profile for the pure-gas case. At the leading edge, the
particles tend to keep their motion in the freestream and consequently the

particle tangential velocity is greater than the gas velocity. Then, owing

to the slip between the two phases, a drag force arises and the particles
decrease their tangential velocity while the gas increases its tangential
velocity. Marching downstream, the difference between the tangential

velocities for the two phases becomes smaller and smaller. With the

particle slip velocity approaching zero, the drag exerted on the particles
by the gas approaches zero as well. When the particle velocity becomes the
same as that of the gas, the interaction between the particles and the gas
disappears. Therefore, the particle tangential velocity may become nearly

the same as the gas tangential velocity but it cannot be smaller than that.
By contrast, after entering the boundary layer at the leading edge, the
normal gas velocity is induced first to satisfy the continuity requirement

and the normal velocity of the particles is then induced due to the drag

force exerted by the gas. Of course, this induced velocity for the
particles cannot be greater than that of the gas. However, in addition to
the interaction between the two phases, the continuity requirement for the
particle phase is another important factor which determines the changes in

the normal velocity. Since the tangential particle velocity decreases in
the x-direction, a normal velocity must be induced to ensure mass

conservation. Thus, the normal particle velocity may exceed the normal gas
velocity. Especially in the region near the wall, where the particle slip

velocity is quite large, the retardation of the particles is considerable
and it results in a rapid increase of the normal particle velocity. In the

region far downstream, where the thickness of the boundary layer varies very
slowly, the effect of the interaction between the two phases becomes
predominant and the normal velocities of the two phases tend to approach

each other like the tangential velocities.

The numerical results shown above were obtained with the six-point

scheme for the x-momentum and energy equations for the particle phase after

the critical point. Instead, if the four-point scheme is -till employed for
the particle x-momentum and energy equations after the critical point,

regardless of the compatibility conditions, the corresponding results are

shown in Figs. 15 to 17. It is found that some small oscillations appear in
the particle temperature profiles in the near-equilibrium flow region, for
example, at x = 4.05 and 6.05 (see Figs. 15 and 16). The reason is mainly

4. that the four-point scheme has a first-order truncation error in the
y-direction, O(Ay), while the six-point scheme is of second order, O(Ay 2 ).
In other words, the latter is more accurate and it can lead to a better
result. It is also interesting to note that these oscillations are bound
and damp out as x increases. In Fig. 17 (x = 10.05), it is seen that these
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oscillations disappear. It means that in the small-slip region (x 0 10),
both the six-point scheme and the four-point scheme can be used.

The finite-difference computations were made with the mass loading ratio
= 0, using the same difference scheme for the dusty-gas boundary layer.

Obviously, the two-phase system of a gas-particle mixture reduces to a
single-phase system of a pure gas when 0 = 0. The results for the case of
P = 0 should be identical with the similarity solution for the pure-gas
boundary-layer equations. With 0 = 0, the numerical results for the
positions x = 1.05, 2.05, 5.05 and 8.05 are respectively shown in Figs. 18
to 21. They are compared with the similarity solution of a pure-gas
boundary-layer flow under similar conditions. Excellent agreement between
these two solutions is achieved along the whole plate. This comparison
provides further strong evidence that the present finite-difference scheme
is correct.

Once the flow profiles across the boundary layer are known, the
boundary-layer characteristics can be calculated. The three nondimensional
quantities rw, 4w and 6 as functions of the distance x from the leading edge
are shown in Fig. 22 to 24. It is found that the curves for the shear
stress -w and the heat-transfer rate 4w are nearly identical except in the
nonequilibrium region. This is attributed to the Reynolds analogy between
the heat-transfer and the shear stress [34]. It is well known that for the
boundary-layer flow of a pure gas on a flat plate, the profiles for the
velocity and the temperature become completely analogous if the Prandtl
number has the value of unity. For the dusty-gas boundary-layer flows over
a flat plate, there is no similar relation available. As pointed out
before, however, the gas-particle system behaves like a gaseous mixture in
the two limiting regions: (1) In the large-slip limit near the leading
edge, the two-phase system responds as if there were no particles. For this
analysis, the Prandtl number of the gas is just assumed to be equal to unity
so that the Reynolds analogy holds in the large-slip region, or more
exactly, with zeroth-order accuracy. (2) In the small-slip limit far
downstream, the two-phase system acts like a pure gas with modified

thermodynamic properties. The modified Prandtl number Pr is given by [26]

Pr = Pr1+ /

In the case under consideration in this paper, a = 1.0 and P = 1.0. This

yields Pr = Pr = 1.0. Consequently, the Reynolds analogy also holds in the
small-slip region with zeroth-order accuracy. In Figs. 22 to 24, it is
interesting to note that along every curve for the characteristic
quantities, there is an inflection point which corresponds to the critical

point. This fact means that for the boundary-layer flows of a gas-particle
mixture, some significant changes in the flow properties occur at the
critical point. In fact, as mentioned before, at the critical point, the
two-phase system accomplishes essentially the transition from the
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nonequilibrium flow to equilibrium flow. In Figs. 22 to 24, the
corresponding results for the pure gas without particles are shown for
comparison. It is seen that the shear stress and heat-transfer rate at the
wall increase and the displacement thickness decreases owing to the presence
of particles. Owing to the interaction between the particles and the gas in
the two-phase boundary layer, the tangential velocity and temperature of the
gas phase increase except at the wall and at the outer edge, where the same
boundary conditions hold as in the pure-gas case. Compared with the
pure-gas boundary layer, the velocity and temperature profiles for the
dusty-gas boundary layer have a steeper gradient at the wall and a more even
gradient near the outer edge. It is clear that, as a result of these
changes in the flow profiles, the shear stress and heat transfer increase
while the displacement thickness decreases. The same conclusion was
obtained from the asymptotic analysis [27].

Finite-difference calculations were also done with other types of
initial profiles: the zeroth-order asymptotic profiles and the extended
Wu-type profiles. In the previous computations of this analysis, only the
first-order asymptotic profiles were applied. The numerical results for
these three different types of initial profiles are compared in Figs. 25 to
30. The difference solution for the extended Wu-type initial profiles
started at the leading edge (x o = 0.0) and the solutions for the two
asymptotic profiles at xo = 0.05. Figures 25 to 27 give the flow profiles
of the two phases at x = 0.15, 1.05 and 5.05, and Figs. 28 to 30 give the
nondimensicnal boundary-layer characteristics. The results for the extended
Wu-type profiles indicate that employing them as the initial conditions can
result in physically reasonable solutions which agree very well with the
solution for the first-order asymptotic profiles. The results for the
zeroth-order asymptotic profiles show that using the zeroth-order asymptotic
profiles as the initial conditions may cause some deviations in the flow
properties in the quasi-frozen and nonequilibrium regions but not in the
quasi-equilibrium region, especially for the normal velocity of the
particles. The reason is that the zeroth-order asymptotic profiles assume a
zero velocity for the normal particle velocity at some distance from the
leading edge (say, xo = 0.05) and it leads to some errors. With
increasing x along the flat-plate, these deviations are damped out and all
the three initial profiles yield identical results. It should be pointed
out that the possibility of using the extended Wu-type initial profiles
leads to a significant simplification in the computation procedure, since it
is not necessary to solve the asymptotic solution in the large-slip limit.

8. CONCLUDING REMARKS

The complete set of nonlinear partial-differential equations for
compressible, laminar, boundary-layer flows of a dusty gas over a
semi-infinite flat plate was solved using implicit finite-difference
schemes. The numerical solutions for the three distinct flow regimes, the
quasi-frozen, nonequilibrium and quasi-equilibrium regimes, were obtained
for the case of the Stokes relation. The finite-difference results for the
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two limiting cases of large slip and small slip are in good agreement with
the corresponding asymptotic solutions. The numerical examples indicate
that the present finite-difference method provides a useful technique for
studying two-phase boundary-layer flows.

From this analysis, it is shown that in order to get a finite-difference
solution along the entire flat-plate length with the present basic
equations, it is important to deal realistically with the particle density
after the critical point. The assumption that the gas-particle system is
treated as a binary gas with the given mass ratio of the components (P)
after the critical point represents a practical approach for the case where
diffusion is the main controlling process in the region x > xcri* It yields
physically reasonable results.

For the x-momentum and energy equations of the particles, both
four-point and six-point schemes can be used. The numerical computations
indicate that the six-point scheme leads to better results especially in
the nonequilibrium-flow region, since it has an accuracy of second order.
When using the six-point scheme it is necessary to obtain the compatibility
conditions as additional boundary conditions. Fortunately, the
compatibility conditions for the tangential velocity and temperature of the
particles are very simple after the critical point.

A comparative study of the three different initial profiles (the
first-order asymptotic, zeroth-order asymptotic and extended Wu-type)
indicates that all three types of initial profiles can be used for the
finite-difference solution but the zeroth-order asymptotic profiles might
cause some errors in the near leading-edge and transition regions. It is
suggested that the extended Wu-type initial profiles can be used, since they
lead to a significant simplification in the numerical procedure.

The numerical results presented in this report indicate that the effects
of the particles on the boundary-layer flows are considerable and that the
modification in the flow properties owing to the presence of particles
includes an alteration of the flow profiles, an increase in the shear stress
and heat transfer at the wall and a decrease in the displacement thickness.
These are the major features found in compressible, laminar boundary-layer
flows of a gas-particle mixture.
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APPENDIX A

DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS WITH A SIX-POINT SCHEME

The momentum equation of the gas phase is

pu !+ pv 2 _~!+ 2 LT 2! + p(u u)p (A-i)
oxby2 dT by &y u

or 2! (pv T pm)U 8u P PUPD -Ppu pD (A-2)

where )T Tn+1 + (K2-,T - n-i
IA dTT y (1+K)Ay n

Substituting the expressions for difference quotients (3.1)-(3.4)11 Eq.
(A-2) becomes

(Pu)m+G,n 41 ('um+i,n - um,n ) + ( v- p-Ty)m+e,n{(+)y [Um+l,n+l

+ (K2-1)u m., - K2um+ln-1] + (l-0K)&y m,n

(l+K+K)Ayn

+ .2(1-0)K 2A 2U mn
(li-K) A 2

=(Pp uPPD)mi-e,n - [( PpiJD)m+i,n umi-i,n + (i-0)( PpPD)m,n um,n] (A-3)

Multiplying by Ax and rearranging Eq. (A-3), the finite-difference form of
the momentum equation can be obtained:

A. 1



A I I + (A-4)SUm+l,n+1 + Bn Um+l,n + n Um+l,n_ 1 = Dn

where the coefficients have the following expressions:

I
An = an(Pv - iTy)m+O,n - Cn Pm+O,n

Bn (Pu)m+E,n + an(K 2-1)(pv - ji'Ty)m+O,n + cn(K+l)m+e,n + OAx(piLm+l,n

= -anK 2(pv - p'Ty)m+e,n CnKpm+G,n (A-5)

Dn  [(Pu)m+en - E-)Ax(PPPD)m,n]Um, n - bn(PV - i'Ty)m+0,ntum,n

+ dnpN+O,n A2Um,n + Ax(PpupPO)m+O,n

The energy equation of the gas phase is

Pu 6T + pv T 2 P 2T + L dP (T)2 + Ec Ec)22Pu -- +:E + Ec pp [(up - u)2

ox by Pr ay2 Pr dT oy by

+ (V - V) 2 ]pD + 1 p - T)pNu (A-6)Re- (P 3PrpT

or 2
pu T + (pv - T) 6TP -aT- Ec ,() + Ec pp [(Up -U) 2ax Pr Y y Pr ay 2 aY

+.L (v - V)2 ]pD + 3 PPTPPNu p T-Au (A-7)
Re Vp 3P 3Pr P

Using a similar procedure, Eq. (A-7) is discretized as

(Pu)n+e In L-r m+ln Tmn) + (pv TY)m+,n [Tml,n+1

AxPr ,n (1+K)Ayn  m+

Continued
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+ (K2-1)Tm+i,n - K2Tm+ini] + 1-0 B m
(Il+K) On Amn

- r--{ 6 [Tm+in+i - (K+l)Tm+in + Kmn1
Pr m+O,n (1+K)&Yn 2

+ 2(1-0)K 2A 2T m,nl
(1+K)Ayn2

{Ec p~ u ,2 + Ec pp [(Up U- u2 +.1 (Vp - V) 2 ]pD +3p T pNu Im+0, n

3ep=!- PPNU)m+l,nTm+i,n + (1-0) (4 ~)~~~] (A-8)
3r (-.- PpPumnmn

The difference equation for the energy conservation of the gas is

A 2 T+B2 T +C2 D2 (A-9)
An Tm+i,n+i + n Tm+i,n n ~ Tm+i,n-1. Dn

where An2np _-C ~'
An an (Pr Ty )m+ e,n- n L0n

PrP

22
Bn PU),+On= -aK 2v -p Ty, )m+e~ CnKL+ n I( 0nPr Pr r

=~~~~ [(u) &x Pp-)~ (..k. Nu ), 1 b n p (A-1T0)

3

Cn~ an 2 p -. -L Ty'*~ - *(-)+



3 ppl ulm+o,n

The x-moinenturn equation of the particle phase is

u P v -- -(up - u)piD = upD - u pD (A-li)

Discretizing Eq. (A-11) yields

PmE, -AL (uPm, n - uPmn) + vPm+En 1(i+K -A uml~~

+ (K2-1)u - K 2U + 1-6 0

=(uID)m+o,n - [9U2D)m+l,nupm+1~ + (1b6)(PD)m,nup]~ A-2

Therefore

A 7 u + B 7 +C 7 u =D 7  (A-13)
n Prn+l,n+l n UPm+l,n n Pm+i,n..i n

where 7
An na Pme

B7= U + an(K2-1)Vp+ + oAx(PD)m+l,n (A-14)

7

n nK Pm+8,n

[n= upm~ 6  - (1())Ax(PD)m,n]uPm~n - bnvpm+O6 n "Um~ + &~P~+

The energy equation of the particle phase is

A.4
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u -!2. + v a-2 -- ~ (T T) i~u T5- TpNu T ~ (-5
P bx P by 3Pr P- 3Pr 3Pr TpN (-S

Then

ume~ L (Tp~ T ) + VP { r (K 2-1) TPmG~ P~~n Pm P+O~ (1+K) Ayn Pm+I n+1 + Pm+1,n

-K2T ] i -e ATp

c(.' TI.Nu)m.G 8n - [0(.~ 'iNu)m+i,n T 1  + (1-0)( G.'I pNu )m,n Tpm~n

(A-16)

Consequently,

An8 T +Bn8 T + C 8 T 08(A-17)

where 8

An= anvpm

8Bn =u + an(K 1)v +N e~~. )m+1,nPm+e,n PmB,n P

C= -a K2 v (A-18)n Pm+O,n

8
Dn =[upm+O 1 b)A -p~ mn] v AT

n P m'n Pm+eO,n Pm'n

+ Ax(- T pNu Li+ 03Pr

The continuity equation of the particle phase can be Yritten in the
different forms as follows:

A.5
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u __+ + p (= +-'P (A-19)

The third form can be discretized as

L. [(L ) (K) n~+Vp 8 [L
PmOnAx m+ln p~ p m, n P+8,n (1l+K)Ayn p n1n

+ ( K 2-1() K K2( ) + P--(L
p m+1,n p p m+ 1 ,n -1 (1+ K)Ay n p m,,n

- (1)m+l n + 1(1 )m]{I L (uml n u Pm )+ 8 AV P~
Pp Pp nAx m+, Pmn (1+K) Ayn ~+,

+ 1-8 Lw AV 0 (A-20)
(1+K) Ayn Pm, n

Then the difference equation becomes

A n + 9  DL9 (A-21)

The coefficients in Eq. (A-21) are:

An na nPm+@,n

8 9 + a (K2-1)Vp+ - O(Upmi -upn - an Av~m

Cn = -an K2V~mG (A-22)
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9
D n [U pm+ n + (1-) (UP~~ - UPn ) + bnAV Pm+ O]((Li n

bnv A(m,n

SPm+0, n pp

AwhereAVO 1-oAV( 23
VPin+e,n = Ml~ + (lOAPm,n (-3

N A.7
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APPENDIX B

DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS

WITH A FOUR-POINT SCHEME

The continuity equation of the gas phase is

Pu + -L pv = 0 (B-i)
ax by

Using the expressions for the finite-difference quotients (3.5)-(3.7), Eq.
(B-i) becomes

L. [(pu))~n + ()

2- PU)m+l,n - (Pu)mn + (Pu)m+i,n-1 - (Pu)m,n-1

+ 0 I(PV)m+1,n - (PV)m+l,n.1] + 1-0 [(Pv)mn - (Pv)mn4] = 0
Ayn-1 AYn-1 (B-2)

Therefore

(Pv)m+i,n = (Pv)m+l,n-I -- ,n - PV)m,n-(pI

AYnxI [(PU)m+ I n - (Pu)m,n + (PU)m+l,n-1 - (Pu)m,n-l] (B-3)

The x-momentum equation of the particle phase is

Up lUp + Vp _N_ = - (up - u)pD (B-4)
P x p Fy

With the quotient expressions (3.8)-(3.10), Eq. (B-4) becomes

iu L -uu P )+v {_eL )u
Pm+On A (Upm+1,n n um)n Ayn (Upm+l,n+l " Upm+i,n

Continued
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+ (18 u -mnl u m
Ay~ n mn Up~)

- *ej(PD)rn+i,n Upm+l n + (18')(P)mn Upmn] + (uPD)m+On (B-5)

Therefore, the difference equation can be written as

A 3 + 3 uC 3(B-6)
AuPm+l,n+l + n upm+l,n n

where A 3  = 9__ V
n -,y- Pm+ G,n

38n3 = U VAX + o~x(PD)m+lin (B-7)

Cn~~ - [1e(Pm+ E,n ]un P+ + 1-)Pn

nAyn On Pm,n+l L~Pm+ 0,n A~yn Pm+ G,n

- (1-(O)AX(PD)m,nlupm~n + 6x((uPO)m+e,n

The y-mornentum equation of the particle phase is

V P- + I vp - v~D(B-8)

Substituting expressions (3.8), (3.9) and (3.11) into Eq. (B-8),

U (+ 1-8+(v -vO (

- 4 8U0D)m+i,n vPm+l1n + (1-)(iiD)m,n vp] + (vPD)m+O,n (B-9)

8.2
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Then, the finite-difference form for the y-momentum equation becomes

4 44
AB nvVpm1 =C (B-10)

n Pm+l,n Pm+i,n-1

&% + 0 v + 8Ax(PD)m+l,n

Upm+e,n Ayn 1 Vpm+ e,n

B 9X (B-11)
Bn AYn I Vpmn+ (,n

[U- (-0)&x V (1.0)&x(PD)m,n]Vpm,n

n = pm+,n Ayn-I Pm+0,n

+ [(l-0)AX vp ]vPmn.. + Ax(vvD)m+enAYn. +~ Vmn-1 ,

The energy equation of the particle phase is

u TR + V - = - a(T - T)pNu (B-2)
P ax p by 3Pr p

Using a procedure similar to the x-momentum equation, the finite-difference
equation for particle energy conservation can be derived as follows:

U L ( T ) + v {eL TPm+en & (Pm+1,n - TPm,n Pm+O,n Ayn  pm+l,n+l Tpm+i,n

+-'--n (Tpm,n+1 - Tpm,n H
9 a T + 1-0) (--c' iNu )m n T nTNu

-[3 Pr u )m+1,n + ] + P31 r Til Pm+0,3Pr

(B-13)

5 5 5

n  Pm+1,n+ Bn  Pm+l,n = (B-14)
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A5  & Ax

5 U - + Ax (--!I- u )m+In (B-15)n Pm+E,n Ay n  Pm+ 0,n 3Pr

c -[ )X v + r+ ( A-) V eAyn  Pm+ e,n ]TPmn+ Pm+ On Ayn  m+ ,n

- (-E)3x(-- Nu)m,n]Tp + Ax(3' TpNum+O,n

The continuity equation of the particle phase is

a_ B : 0 (8-16)o-x pUp +Tby ppp

or

Up p  p -, + Pp( + 0 (B-17)
ax y by

Usirg the quotient expressions (3.8)-(3.10), Eq. (B-17) becomes

Upm+e,n Ix- (PPm+l,n - PPm,n + Vpm+e,n yn (PPm+l n+1 PPm+l,n

(1-_) . ] + [O Pm+l,n + (l_0)Ppm,n][_A (UPm+1,n _ UPm,n )

+ v P.0 (v - v ) + -_( - v ] A 0 (B-18)
AYn-pm+1,n+1 Pml,n ty pm,n+1 Pmn

Then, the finite-difference equation can be written in the following form:
6 66

n PPm+1,n+l nP Pm+l,n (8-19)

8.



where A 6 = Av
n Ay n* Pm+eG,n

Bn 20u PMln+ (1-2e)Upm + e2lx (v Pmlnl- 2v pm+l )
fl Pm+1,n m~n Ay~ n mi,+

+ 0(i-0)AX (v Pm - 2v Pmn) (B-20)

C6  - G(-)x~+[2-) (~)umn
Cn ( yn XV m+o,n li P,l + [2-) Pm+1,n +2l P~

01AY ( Pm+1,n+l 2 Pm+l,n (102X( m,n+l 2 Pm,n Appm,n

B.5



APPENDIX C

DERIVATION OF THE RELATIONS FOR SHEAR STRESS, HEAT TRANSFER

AND DISPLACEMENT THICKNESS

Characteristic quantities of boundary-layer flows are defined as

(C-1)
y w

= -k ((.)T ) (C-2)

8* = f (1 - P*u* )dy* (C-3)
0 pt Ut

Correspondingly, the nondimensional parameters take the following form:

TV %w -~e,. (C-4)
p*. u* 2

4w - e--- (C-5)

= .i ve 0  (C-6)

where p* u* x*
Re, - ______

From the definition of the nondimensional parameters, Eq. (2.11), the
derivatives of the gas velocity u* and temperature T* can be given as

C.1



_.*:u* vie-.- - (C-7)
by * T* a

T* R T  (C-8)
ay* .*ay"

and the integration (C-3) becomes

f (1 CO )dy*- f'  0 (1- pu)dy (C-9)
0 p*. u* YRe o

Therefore, the nondimensional characteristics of the boundary-layer flows
can be expressed as,

by w

4 6T) (C-11)
Pr Ec y w

6 f (1 - pu)dy (C-12)
0

where

P r and Ec

p O

In order to calculate the derivatives at the wall with the
finite-difference solutions, the gas velocity u near the wall can be
approximated by a cubic polynomial:

u = au + buy + cuy 2 + duY 3  (C-13)

At the four grid points nearest the wall, the values of gas velocity are
known and are equal to ul, u2 , u3 and u4 , respectively. Then, there are
four equations which can be used to obtain the coefficients au, bug cu and
dj

C.2
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YI = 0: ui = au  (C-14)

Y2 = AY 1u2 = a u + buAYl + CuAy1 2 + duAyi 3  (C-15)

Y3 = (K+1)Ayl: u3 = au + bu(K+1)Ay, + Cu(K+1)2ty12

+ du(K+l) 3Ay1
3  (C-16)

Y4 = (K2+K+1)AyI: u4 = au + bu(K 4 K+)A, + cu(K 2+K+1) 2Ay 2

+ du(K 2+K+l) 3 Ay1 
3  (C-17)

Solving the system of simultaneous equations (C-14) - (C-17) by an
elimination method, the value of coefficient bu is obtained:

bu = K2+K+1 [(u2 - u!) - u3 - Ul + u4 - Ul] (C-18)

K2 AyI  K(K+1) K(K 2+K+1) 2

For the gas temperature T, there is a similar relation for coefficient
bT:

bT K2+K+1 [(T2 - TI) T3 - T + T4 - T, (C-19)
K 2 AyI  K(K+1) K(K 2+K+1) 2

Since the gas velocity at the wall vanishes, uI = 0 in the expression
(C-18), therefore, the nondimensional shear stress at the wall can be
determined:

4w K 4K+1) [u2 - u3  + u4  (C-20)

K2Ay I  K(K+I) K(K 2+K+1) 2

and the corresponding heat transfer is

C.3



= ~w (K2+K I) [it2 - T1) T"T 1  n- 1
4w__ (K4___ [T_2- O + 14 - T1  (C-21)Pr Ec K2 y I  2 K(K+I) K(K4K+1) 2

As for the three-point difference formula, the integration I is
calculated by

YN

I = f F(y)dy (C-22)
0

Within every small integration region, the integrated function F(y) can be
approximated by a quadratic parabola p(y) through three consecutive grid
points (m+1, n-1), (m+1, n) and (m+1, n+1):

p(y) = An(. Y -YR)2 + Bn( y - YR) + Cn (C-23)n AY n  n n n

The quadratic polynomial p(y) satisfies the conditions:

p(yn1) = Fm+i,n_1, p F p(yn+1) = Fm+ln+1 (C-24)

Then a system of simultaneous algebraic equations for the coefficients An,
Bn and Cn can be constructed:

An - KBn + K2Cn = K2Fm+l,n-l, Cn = Fm+l,n, An + Bn + Cn = Fm+ln+1

(C-25)

Consequently, the solutions of the above equations can be found as

An = KK Fm+l,n+l - +,n K2 Fm+l,n-1

Bn=1Fm+,n+1 + (K-1)Fm+1,n -K2 Fm+l,n-1 (C-26)

Cn = Fm+1,n

C.4
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Substituting the coefficient expression (C-26) into Eq. (C-23), replacing
the integrated function F(y) by p(y), and integrating Eq. (C-22) in every

small interval Ayn_ 1 and making the summation, the three-point difference

formula for nonequal intervals is derived:

N-1 [Ay n- A AYn-1 Bn + AYnICn]

2 3K2  2K

N- 1 AYn-1 r3K+2 Fm+l,n-l + 3K+1 - 1 FJ] (C-27)

2 6 K+I T m+1,n IK-K- m+1n1

C.5
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APPENDIX D

COMPUTER PROGRAM FDBLEP

The program FOBLEP for solving finite-difference boundary-layer
equations over a flat plate for a dusty gas is written on the Perkin-Elmer
3250 system at UTIAS. The main notations used in the program are listed and
explained below.

U(1) u at grid point (m+1, n)

V(I) = v at grid point (m+1, n)

T(I) = T at grid point (m+1, n)

RO() = p at grid point (m+1, n)

UP(1) = Up at grid point (m+1, n)
VP(I) = Vp at grid point (m+1, n)

VP(I) = vT at grid point (m+1, n)
TP(I) = Tp, at grid point (re+l, n)

ROP(1) = pp at grid point (m+1, n)

I SHEAR = TW at grid line (m+1)

HEAT = w at grid line (m+1)

THICK = 8 at grid line (m+1)

UW = Uw

A: TW = Tw

-EC = Ec

PR = Pr

WN = W

BETA

DX A

DY 6y

D.1



KE = K

CITA =

EPS =

N = maximum value of n

XSTA initial value of x

XMAX = maximum value of x

XCRI = critical value of x

*4-!
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C
C THIS PROGRAM SOLVES THE GAS AND PARTICLE PARAMETERS FOR
C THE BOUNDARY LAYER EQUATIONS OF A DUSTY GAS OVER A SEMI-
C INFINITE FLAT PLATE BY MEANS OF FINITE DIFFERENCE METHOD
C AND GIVES CHARACTERISTIC GUANTITIES OF BOUNDARY LAYER FLOW
C (IMPLICIT SCHEMES FOR TWO PHASES, NONITERATION PROCEDURE)
C
C

C MAIN PROGRAM
C

IMPLICIT REAL*B(A-HO-Z)
REAL*6 KE, KEI, KE2, KE3, KE4, MUI, MDR, MNU, MUJW
DIMENSION A(100), B(iO0), C( 100), D(100)
DIMENSION U(100), V(100), T( 100), RO( 100)
DIMENSION UP(100), VP(100), TP(100), ROP(100)
DIMENSION RUBr(100),RVB (100)
DIMENSION RU(100),CRUOOLCRB(100)
DIMENSION DMD(100), DMN (100), DMDB(100), DI'JB (100)
DIMENSION UD(100), VD(100), TD(100)
COMMON /G/ PR, WN, EC
COMMON /H1/ KE,KE1,KE2,KE3
COMMON /H2/ CA, CB, CC, CD

C
1020 FORMAT (3E13. 6)
1030 FORMAT (5E13 6)
1050 FORMAT (1X,3E13.6)
1060 FORMAT (1X, 5E13. 6)
1070 FORMAT (215,2E13 6)
1060 FORMAT (1E16 8, 7E15. 8)
1090 FORMAT (IX, 215,2E13. 6)
1100 FORMAT (1X,8E15.8)
1110 FORMAT (IX, 215, 1E13. 6, 3E15. 8)
C
C SET THE BASIC PARAMETERS
C-

READ (7,1020) UWTWBETA
READ (7,1020) EC,PRWN
READ (7,1030) DXDY,EPS, 'E,CITA
WRITE (8, 1050) UW, TW, BETA
WRITE (8, 1050) EC, PR, WN
WRITE (8, 1060) DX, DY, EPS, KE, CITA
READ (7,1070) MEND, N, XSTA, XMAX
READ (7,1080) (U(I), V( I), T (I), RO(I),
1 L (I), VP(I). TP( I), ROP(I), I=1, N)
WRITE (8,1090) MENDNXSTAXMAX
WRITE (8,1100) (U(I),V(I),T(I),RO(I),UP(I),VP(I).TP(I),ROP(I),

1 1=1, 10)

D.3
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C-
C SET THE NUMERICAL PARAMETERS

KEI4'KE+1. D+0
KE2#KE*KE
KE3=KE2-1. D+OO
KE4=KEI+KE2
CITA11. D+00-CITA
CITA2=CITAl/CITA
C ITA3=2. D+O00*C ITA
CIT4CITA3-1. D+00
C ITA5=2. D+OO0*C ITA I
CI I=CITA*DX
C12--CITAI*DX
C I13=2. D+00*CI I
C14=2. D+00*CI2
CKIlKE4/KE2
CK2=KE*KE1
CK 3=K~E *E4 *KE4
CK4=(2. D+O0-o3.D+O0*KE)/KEl
CK5=(l. D+00+3.D+00*KE)/KE
CK6=1. D+00/CK2

C----------------------------------------
C CALCULATE THE FLOW PROFILES AT THE NEXT GRID LINE '(M+l)
C----------------------------------------

MUW=TW**WN
XCRI=1. D+O0/MUW
X=XSTA

10 CONTINUE
DO 950 L=1,10
DO 900 M=1,MEND
NI=N-1
N2=N-2
X = X+D X
IF (X. GT. XMAX) GO TO 999

C --------------------------------------
C STORE THE VALUES OF GAS VELOCITY AT THE PREVIOUS LINE (Ml

DO 20 I=1, N
210 RUI(I)=U(I)

C SOLVE THE NEW GAS TANGENTIAL VELOCITY U AT THE NEXT
C GRID LINE (M+1) USING SIX-POINT IMPLICIT SCHEWE
C---------------------------------------
C SET THE BOUNDARY CONDITIONS AT THE LINE (M+1)

U( 1)=UW
U(N)=1.OD+0O

DA4



C
C SET THE FLOW PARAMETERS AT THE GRID POINT (N+I) TO CALCULATE
C THE FIRST AND SECOND ORDER DIFFERENCES AT THE GRID LINE (M)
C

U(N+1 )-U(N)
T(N+1)-T(N)

C CALCULATE THE INITIAL VALUE OF SOME COEFFICIENTS
C

CALL VALU1(CIICI2,CI3,CI4, DY, DY)

C CALCULATE THE COEFFICIENT MATRIX ELEMENTS
C

CALL PARAI(1,UVRORUIRVI)
RUB(1 )=RUI
RVB (1) =RVI
CALL PARA2(1, T, MUI, DMUI,MDR, MNU)
CALL PARA5(1, DX, MDR, MNU, DMDB, DMNB, UV, T, UD, VD, TD)
DO 110 I=2, N
CALL PARAI (I, U, V, RO, RUIRVI)
RUB(I )=RUI
RVB (I) =RVI
CALL PARA3(I, KE2, KE3, U, DEUI)
CALL PARA3 (I, KE2. KE3, T, DETI)
DYI=DYI*KE
DTI=DETI/DYI
CALL PARA4(I,KE,KEI,U, DDEUI)
CALL PARA2(I.T,MUIDMUIMDRMNU)
CALL PARA5 (I, DX, MDR, MNU. DMDB, DMNB, U, V, T, UD, VD, TD)
ROMD=ROP( I )*DMDB( I)
UDI=ROMD*UP( I)
CR (I)=CITA*ROMD
CRB(I)=CITA1*ROMD
DMUI=DMUI*DTI
CALL VALU2 (KE, KE2)

110 CALL COEF1(IURUIRVIMUIDMUI,DEUIDDEUIUDI,CR.CRB,A,B,C,D)
CALL COEF2(U, A, B, C D)

C
C SOLVE THE GAS TANGENTIAL VELOCITY PROFILE BY THOMAS ALGORITHM
C

DO 120 I=2,N1
120 CALL THOMI (I, A, B, C, D)

DO 130 I=1,N2
J=N-I

130 CALL THOM2 (, U, A, B, D)

C TEST FOR THE OUTER EDGE OF BOUNDARY LAYER
C
C COMPARE THE DIFFERENCE OF FLOW PROPERTIES BETWEEN THE LAST
C TWO CONSECUTIVE GRID POINTS WITH THE SPECIFIED TOLERANCE
C

ITEST=O
140 ERROR=DABS(U(N)-U(N1))

IF (ERROR. LT. EPS) GO TO 150
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C
C ADD A NEW GRID POINT AT THE NEW GRID LINE (M+1)

I TEST= ITEST+1
U(N+1 )=U(N)
V(N+1 )=V(N)
T(N+1 )=T(N)
RO(04+1 )=RD (N)
UP (N+ )=UP (N)
VP (N. )=VP(N)
TP (N.!)=TP (N)
ROP (N.1)=ROP (N)

c CALCULATE THE MATRIX COEFFICIENTS AT THE NEW GRID POINT
C---------------------------------------

IF (ITEST. GT. I) GO TO 160
CALL THOwtl (N, A, B.CD)
CALL THDri_'(N,U, A, B,D)
GO TO 170

1't- MUI=1- D+.00
DMUI=0. D+00
DEUI=O D+00
DDEUI=C.D-.0O
RDMD-R OP (N )*DMDB3(N)
UDI=ROMD*UP(N)
CR(N)=ClTA*ROMD
CR8 (N) =CITA1*ROMD
CALL VALU2(KE. KE2)
CALL COEF1 (N, U, RUI, RVI, MUI, DMUI, DEU1, DDEUI, UDI, CR, CRB,A, B,C, D)
CALL THOM11 (N, A. B. C, D)

10 CALL THOM2'_(N, UA, BD)
10 N=N+1

NI =N + 1
N2 = N2+ 1
RU C N) =RU(N1)
RUB(N)=RUBD I)
RVi3(N)=RVB3(Ni)
DM DB(N )=Dtr'DE(N 1)
DMNB (N) =DMNB (N1I)
UD(N)=UD(N1)
VD(N)=VD(N1)
TD(N)=TD(NI)
IF (N EQ 100) G0 TO 999
GO TO 140

1:50 IF (ITESTEQO) GO TO 200
DO 180 I=1.N2

J=N-I

180 CALL THOM2'_(J, U, A, B, D)
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C--
C SOLVE THE NEW GAS TEMPERATURE T AT THE NEXT GRID
C LINE (M.1) USING SIX-POINT IMPLICIT SCHEME
c--------------------------------------
C SET THE BOUNDARY CONDITIONS AT THE LINE (M+1)

200 T( 1)=TW
T(N)=l. OD+0

C CALCULATE THE INITIAL VALUE OF SOME COEFFICIENTS

CALL VALUI(CI1.CI2,CI3,CI4,DY,DYl)

c CALCULATE THE COEFFICIENT MATRIX ELEMENTS

DO 210 1=2, Nl
CALL PARAI (I, UV, RO,RUI.RVI)
RUI=CITA*RUI4CITA1*RUB (I)
CALL PARA3 ( I, KE2, KE3, U, DEUX)
CALL PARA3(I. KE24 KE3. TDETI)
DY 1=DY 1*KE
DUI=DEUI/DYI
DTI=DETI/DY1
CALL PARA3 ( I.KE2, KE3. RU.DEUI)
DUI=CITA*DUI+C ITAl*DEUI/DY1
CALL P ARA4 ( IKEKE 1,T .DDET I
CALL PARA2 (I, TMUI. DMUIMDR, MNU)

UDI=ROP(I )*UPU*DIIDB(I)
EDM=EC*DUI *DUI *MUI*DX
ERD=EC *UD I *UPU
ROMN-=ROP( I)*DMNB(I)
TPT=RcJMN*TP (I)
TD I=EDM.-ER D+TP T
CR (I)=CITA*ROMN
CRB (I) =CITAI*ROMN
CALL VALU2 (KE, KE2)
MUItIMUI/PR
DMUI=DMUI*DTI /PR

2110 CALL COEF1(I TRUI..RVIMUI,DMUI,DETI,DDETITDICR,CRB,A,B.C,D)
CALL COEF2 (T, A, B, CD)

C---------------------------------------
C SOLVE THE GAS TEMPERATURE PROFILE BY THOMAS ALGORITHMt
C--------------------------------------

DO 220 I=2,Nl
220 CALL THOM1 (I, AB, C,D)

DO 230 1=1,N2
~JN-1

2130 CALL THOM2 (J, T, A. B. D)
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C-

C CALCULATE THE GAS DENSITY PROFILE AT THE GRID LINE (M+I)

DO 240 I=1,N
4 RO(I)=I. D+OO/T(1)

C SOLVE THE GAS NORMAL VELOt ITY PROFILE AT THE GRID LINE (M+I)

DO 310 1=1,N
310 RU(I)=R0(I)*U( 1)

DO 32O I=2, N
B(I )-RU( I) -RJE (I )+RU( 1-1 )-RUB( I-I)

--2z C( I )=RVE', I )-PYB (I- 1)

CF=DY/ C 0I',-E
D( 1)=0 D+o0
DO 330 I=2. N
CF=CF*KE

2: D( I )D(I-i )-CITACI )-CF*B(I)
DO 340 I=I,N

24,- V(I)=D(I)*T(T)

C SOLVE THE NEW PARTICLE PARAMETERS (UP, VPTPAND ROP) AT THE
C GRID LINE (M+I) USING FOUR- OR SIX-POINT IMPLICIT SCHEME
C
C CALCULATE SOME COEFFICIENTS OF THE FINITE DIFFERENCE EiUATION
C

DO 410 I=I,N
UD I=UD (I)
VD I=VD ( I)
TDI=TD ( I)

CALL PARA2 ( I T, MUI, DMUI, MDR, MNU)
CALL PARA5(I, DX, MDR, MNU, DMD, DMN, U, V,T, UD, VDTD)
UD(I)=CITA*UD(I)+CITAI*UDI
VD(I)=CITA*VD( I)+CITAI*VDI
TD( I)=CITA*TD( I )+CITAI*TDI

DMD(I )=CITA*DMD(I)

DMN(I)=CITA*DMN(1)
DMDB(I ) =r I TAI *DMDB (I)

410 DMNB(I)=CITAI*DMNB (I)

C STORE THE VALUES OF PARTICLE VELOCITIES AT THE PREVIOUS LINE
c

DO 420 I=1,N
RUB(I )=LP( I )

420 RVB(I)=VP(I)

C SOLVE THE PARTICLE TANGENTIAL VELOCITY UP AT THE LINE (M+I)

IF (X.LT.XCRI) CO TO 530

D.8



C
C SOLVE THE DIFFERENCE EGUATIONS USING SIX-POINT SCHEME

C SET THE BOUNDARY CONDITIONS AT THE LINE (M I)
C

UP(1)=O D+O0

LIP(N)=1. D* O0

C CALCULATE THE INITIAL VALVE OF SOME COEFFICIENTS

CALL VALU1(CI1,C12, C13, C14, DY, DY1)

CALCULATE THE COEFFICIENT MATRIX ELEMENTS

DO 510 1=2, NI
RUI=UP Il)

RVI=VPt I)

CALL PARA3 I, KE2oKE3, UP,DEUPI)

DDEUPI=O D+O0
MUI=O. D+00

DMUI=O. D+O0

UPDI=UD(I)
CALL VALU2 (KE, KE2)

510 CALL COEF1(IUP,RUI,RVI,MUI,DMUI,DEUPIDDEUPI,UPDI,DMD,DMDB,
A,B,C,D)

CALL COEF2(UP, A,B, CD)

DO 520 I=2, NI
52" CALL THOM1(I,A, B,C,D)

DO 525 I=lN2
J=N-I

52 CALL THOM2(J, UFA, E-,D)

GO TO 560

C SOLVE THE DIFFERENCE EGUATIONS USING FOUR-POINT SCHEME

53: DXI=CI1*KE/DY

DX2=C I 2*KE /DY
DO 540 I=1,Nl
DXI=DX I/KE
DX2=DX2/KE
A( I )=DX1*VP(I)
B (I )=UP (I) -A( I )+DMD(1)
DXVP=DX2*VP(I)

540 C(I)=-DXVP*UP(I+1)+(UP(Z)+DXVP-DMDD(I))*UP(I)+UD(1)

UP(N)=1.D+0O

DO 550 I=I,NI

J=N-I

550 UP(J)=(C(J)-A(J)*UP(J+1))/B(J)
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C--
c CALCULATE THE VALUES OF UP AT THE HALF POINT (m4-e)

560 DO 570 11.,N
570 UD(I)=CITA*U.A(I).CITA1*RUB(1)
C-----------------------------------
C SOLVE THE PARTICLE NORMAL VELOCITY VP AT THE LINE (M+1)
c BY MEANS OF THE FOUR-POINT SCHEME

DX1=CI 1*KE/DY
DX2=C I 2'*KE/DY
DO 610 1=2,N
DX 1=DX 1 IKE
DX2-=DX2/KE
3( I)=-Dx.~vp( I)
A (I )=UD. 1) -L(I) +DMD 1)
D XVP= DX2* ,'P (I )

L-i0 C(l)=(UD(l)-DX(VP-DMDBDI))*VII)+DXVP*VP(1-1)+V-D(I)
VP(1)=20 D+00
DO 620 I=2,N

C--------------------------------------
c CALCULATE THE VALUES OF VP AT THE HALF POINT (M+e)

DO 630 I1.N
o:10 VD(1)=CITA*VP( I)+CITAI*RVB(I)

C SOLVE THE PARTICLE TEMPERATURE TP AT THE LINE (M+1)

IF (XLT XCRI) GO TO 730

c SOLVE THE DIFFERENCE EQUATIONS USING SIX-POINT SCHEME

C SET THE BOUNDARY CONDITIONS AT THE LINE (M+l)
C--------------------------------------

TP (1)=TW
TP(N)l. D400

C CALCULATE THE INITIAL VALUE OF SOME COEFFICIENTS

CALL VALU1(CI1.CI2.CI3,CI4,DY,D'1)

c CALCULATE THE COEFFICIENT MATRIX ELEMENTS

DO 710 1=2. 'Ni
RUI=UD (I)
RVI=VD( I)

~~ ~CALL PARA3( I.KE2. KE3. TPDETPI)
DDETPI=0 D+00
MUI=O D+OO
DMUIO0 D+00
TPDJ-TD(I)
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CALL VALU2 ( KE, KE2)
'C CALL COErl (, TP,RURV I, MUIDMU I,DETP I,DDETPI, TPD I, DN,DMNB,

A, L, C, D)
CALL COE72 (TF, A, B,C, D)
DO 720 1=2, NI
CALL THO'l( I, A. B, C, D
DO 725 I1 1NZ

'~CALL THO)Mir-_(J TP, A, B,D)
GO TO 6305

c--------------------------------------
C SOLVE THE DIFFERENCE EQUATIONS USING FOUP-POINT SCHEME

7 j', DXI=CII*KE.'Y
D X2 CI-= 2 *p-E 'I, N
DO 740 1=1 N:,
DX 1=DX1 /KE
DX2l~rDX2_/KE
A( I )Dxl*VD( I)
13t 1)=U[ ) -A I ).DMN'])
DXVF=DX2*VD(I 1

TP(N)=I. D+0
DO 750 I=1.N1
J=N-I

75K_ TP(J)=(C(J)-A(J)*TP(.J+I ))/J3(J)

C SOLVE THE PARTICLE DENSITY ROP AT THE LINE (M+l)

605 IF (X.LT XCRI) CO TO 830
C--------------------------------------
c GET THE PARTICLE DENSITY BY THE ASSUMPTION THAT THERE IS NO
C DEPOSITION OF PARTICLES ON THE SURFACE OF THE PLATE

DO 820 I=1,N
82? ROP (I)=BETA*RO (I)

GO TO 900
C--------------------------------------

r SOLVE THE DIFFERENCE EQUATIONS USING FOUR-POINT SCHEME

G3 DXl1=cIl*KE/DY
DX.^'C I2*KE /DY
DO 840 1=1,Nl
DX 1=DX l/KE
DX2=DX2/KE
A( I)=DX1*VD(I)

(I )C ITA3*UP ( )-C ITA4*RUB (I)
+CITA*DX1*(VP(1+1)-2.D+OO*VP(I))

2 +CITA*DX2*(RVB(I+1)-2. D+OO*RVB(I))
8340 C(I)=-DX2*VD(I)*ROPU1+l).(CITA4*UP(I)+CITA5*RUBUl)

I -CITAI*DXI*(VP(1+l)-2.D.+OO*VP(I))
2 -CITAl*DX2*(RVB(I+l)-2.DOO*RVB(l)))*ROP(X?r D.11



ROP (N)=BETA
DO 650 1=l.N1
J=N- I

65:-1 R0P(J)=CJ)-AJ*RP(J+1 )/j3(J)
900 CONTINUE
C-

C CALCULATE THE CHARACTERISTIC QUANTITIES OF BOUNDARY LAYER
C FLOW: SHEAR STRESS, HEAT TRANSFER AND DISPLACEMENT THICKNESS

c GET THE SHEA9R STRESS AT THE WALL

Ct1DY=CK1*MUW,'DY
SHEAR= (U(2)-)( I))- (U(3)-U 1))/CK2+ (U4)-W(1)) /CK3
SHEAR=SHE AR~*0 MDY

C GET THE HEAT TRANSFER AT THE WALL

CMDY=CMDY/ (PR*EC)
HEAT=(T(2)-T(l))-(T(3)-T(1))/CK2.(T(4)-T(l))/CK3
HEAT=-HEAT*CMDY

C---------------------------------------
C GET THE DISPLACEMENT THICKNESS USING THREE-POINT DIFFERENCE
c FORMULA

DYl=DY/(6. D+00*KE)
DO 910 1=1,N

910c RU)(I)=1. D+00-RU(I)
RU(N+J )=O. L+00
THICK=O.D+00
DO 920 1=2.N
DY 1=DY 1*KE
SUMI=CK4*R)( I-I )+CKS*RU( I) -CK6*RU( 1+1)
SUM I=SUMI*DYI

'2C TH ICK=THI C l+SJM I

c OUTPUT THE COMPUTlATION RESULTS AT THE GRID LINE (M+1)

9510 WRZTE(8,1110) M, NX, SHEAR, HEAT, THICK
WRITE(6, 1100) (U(I).V(I), T(I), RO(I),

1 L~~U( I), VP(I ),~TP( I), ROP(1). 1=1 N)
IF (X-XI'AX) 10, 10, 999

999 STOP
END
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C

C
C-

C SUBROUTINE PROGRAMS
C--

C-

SUBROUTINE PARA1(1.tJ,WV,WRoRUIRVI)

C CALCULATE SOME PRODUCTS USED WHEN SOLVING THE FINITE
C DIFFERENCE EGUATIONS

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION WU(1),WV(I),WR(1)

RU I--WR ( I )*WU( I)
RVI=WR(I)* Wv(I

RETURN

END

SUBROUTINE PAFA2(I,T,MUI,DMUI, MDR, MNU)

C CALCULATE SOME PARAMETERS USED WHEN SOLVING THE FINITE
C DIFC'ERENCE EGUATIONS

C-
IMPLICIT REAL*8(A-HO-Z)

REAL*8 MUI, MDR , MNU, NU
DIMENSION T(1)
COMMON /G/ PRWNS,REYP,EC

c
MUI=T( I )**WN

DMUI=WN*MUI/( I)

DR=I D.O0
NU=2 D+O0
MDR=MUI*DR
MNU--MUI*NU/(3 D+OO.*PR)

RETURN

END

SUBROUTINE PAPA3(I, KE2, KE3, W. DEWI)
C - - . . . . . . . . . . . . . . . . . .

C CALCULATE THE FIRST ORDER DIFFERENCE USED WHEN SOLVING THE
c FINITE DIFFERENCE EOUUATIONS

IMPLICIT REAL*G(A-HO-Z)
REAL*8 KE2,KE3

DIMENSION W(I)
C

DEWI"W ( +I )'H'E3eW ( I)-KE2*W (I-1 )

RETURN

END
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C---

SUBROUTINE PARA4(IKE, KEI, W, DDEWI)

C CALCULATE THE SECOND ORDER DIFFERENCE USED WHEN SOLVING THE
C FINITE DIFFERENCE EGUUATIONS

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 EKEI
DIMENSION W(1)

C
DDEWI=W(1 I 1)-KEI*W ( I)+KE*W(I-1)

',p C

RETURN
END

SUBROUTINE PARA5(I,DX, MDR, MNU, DMD, DMN, U,V, TUDPVD, TD)

C CALCULATE SOME PARAMETERS RELATED TO THE INTERACTION TERMS
C BETWEEN GES AND PARTICLES
C

IMPLICIT REAL e(A-H,O-Z)
REAL*8 MDFMNU
DIMENSION DMD(1),DMN(1),U(1), V(1), T(1),UD(1),VD(1),TD(1)

c
DMD(I ) =DX*MDR
DMN(I ) =DX*MNU
UD(I)=U(I)*DMD(I)
VD( I)=V(I )*DMD( I)
TD(I)=T(I )*DMN(r)

RETURN

END

SUBROUTINE VALUI(CI1,CI2,CI3,CI4, DY,DYl)
C
C GIVE THE INITIAL VALUES OF SOME COEFFICIENTS
C

IMPLICIT REAL*8(A-HO-Z)
REAL*8 KE, KE1
COMMON /HI/ KEKEI,KErKE3
COMMON /H2/ CACB, CC.CD

DYI=KE1*DY
DY2=DY 1 *DY/KE
CA=CI 1/DY1
CB=C12/DY1
CC=C13/DY2
CD=C14/DY2

C
RETURN
END
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SUBROUTINE VALU2(KEKE2-_)
c -

C CALCULATE THE VALUEE OF SOME COEFFICIENTS AT THE GRID POINT
C----------------------------------------

IMPLICIT REAL*B(A-HO-Z)
REAL*6 KE, KEC--
COMMON /H2-_/ CA, CB, CC, CD

CA=C A /KE
CB=CB/KE
CC=CC/VKE=2
CD=CD/.EZ

RETURM~N
END

C----------------------------------------
SUBROUTINE COEFI(IW,RUI,RVI,MUI,DMUIDEWIDDEWIbWDI,CRCRB,

*A AB, CD)

C CALCULATE THE COEFFICIENT MATRIX ELEMENTS A,B 1 C, AND D FOR
C THE CRANK-N10OLSON SCHEME

IMPLICIT REAL*BCA-H, O-Z)
REAL*B KE, KEl, KE2, KE3, MUI
DIMENSION W1 ), CRC lLCRB(1 ),A( 1).B(l), C(1LD(1 )
COMMON /Hl / KE, KEI1 KE2-, KE3
COMMON /H2/ CA, CBCCC D

RVT=-R I -DMUI
CRVT=C A*RVT
CMU=CC *MU I
A( I )=CRYT-CMU
BC I)=R)Jl-..EJ.CRVT4-KEI*CMJ4CR(I)
C (I )-KE2*CR2'T-KE*CMj
DEW I=DEWI *CB
DDEWI=DDEW I*CE
D (I )=(RUI -CRB I)) *W.jI -RVT*DEWIPsMU I*DDEWI+WDI

RE TURN
END
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C--
SUBROUTINE COEF2(W, A, B, C, D)

C
C SPECIFY THE COEFFICIENT MATRIX ELEMENTS A(1),B(1),C(1),D(1)
C

IMPLICIT REAL*8(A-H.O-Z)
DIMENSION W(1),A(1),B(1),C(l), D(1)

C

A(1)=O D+O0
*. B(1)=1 D+O0

C(1)=0 D+O0
C D(1)=W(I)

RETURN
END

c

-4 SUBROUTINE THOMI(IAB,CD)
~c

C ESTABLISH UPPER TRIANGULAR MATRIX (FORWARD ELIMINATION) FOR

C SOLVING THE TRI-DIAGONAL SYSTEM FOLLOWING THE THOMAS ALGORITHM

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(1),B(1),C(1),D(1)

C

BC=C(I )/B( I-)
B(I)=B(I)-BC*A(I-1)

D(I)=D(I)-BC*D(I-1)
C

RETURN
END

SUBROUTINE THOM2 (I,W,A, B, D)
C
C GET SOLUTION (BACK SUBSlITUTION) FOLLOWING THOMAS ALGORITHM
C

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION W(I),A(1). B(1),D(1)

C
WC(I)=(DCI )-A( I )*WCI+1) )/BC(1)

RETURN
END

I.D.1
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APPENDIX E

AN ADDITIONAL DISCUSSION REGARDING THE ASSUMPTION OF THE PARTICLE-DENSITY

PROFILE AFTER THE CRITICAL POINT

In the foregoing analysis, it was pointed out that at the critical
point, the particle velocity at the wall vanishes. Physically, Upw = 0
means that the particles will stop and stay at the wall. Consequently, a
lot of particles would gradually accumulate on the surface and it would
result in a great increase of the particle density at the wall unless a
diffusion mechanism is the predominant process. Therefore, contrary to a
diffusion-controlled process (as assumed in the previous analysis), the
accumulation of particles on the surface represents another extreme limiting
case for a gas-particle system. It is not the purpose of this discussion to
obtain information concerning particle deposition on the flat plate,
although such data can be used in some practical problems (for example,
retardation, accumulation and impingement of particles on solid surfaces
lave considerable effects on the erosion of the surfaces). The aim here is
to attempt to gain more insight into the assumption of the particle-density
profile when x > xcri.

In the following, it is assumed that the accumulation of the particles
at the wall is allowed and the thickness of the particle accumulation layer
can be neglected compared with the boundary-layer thickness. The particle
density will eventually become very large at the wall. So it is reasonable
to specify the reciprocal of particle density at the wall to be zero. Then
an additional boundary condition is obtained and the six-point scheme can be
applied to the continuity equation of the particle phase. Using the
reciprocal of the density as a new dependent variable, the continuity
equation (2.16) can be written as

-L (L)+ V k (1) (1o)( + 0 )

p x pp p- pp Pp (i1y

With the quotient expressions for the six-point scheme (3.1)-(3.4), its
finite-difference form is

n p m+BR,9n)m l'  + np =D 9  (E-2))m+l ,n+l pp MI+n )pm+l ,n-I

9An = an V pm+O,n(E-3)
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n = Upm + an(K 2-1)Vpm+o,n - O(Up n - Upmn) - anAvPm+. 0n (E-4)

9Cn= -anK 2Vpm+ e,n (E- 5)

Dn = u+(-G( ) + b AV]IL )n [UPm+O,n + (1-P)(Upm+1,n Pm,n n Pm+e,n p m,n

bnPm+e),n App m,n(E6

where
AVpm+en = 9Vpm+ln + (1- ) Vpm,n

The boundary conditions at the wall and the outer edge of the boundary-layer
are:

(L) 0 (E- 7)
PP m+1,1

(L) =1(E-8)
Pm+1,N

, By solving the difference equation (E-2) with the boundary conditions (E-7)
and (E-8), a numerical solution is obtained for the same freestream and wall
conditions. In Figs. E-1 to E-4, these results are compared with those
results obtained based on the assumption of pp = Op for x > Xcri. It is
interesting to note that the resulting boundary-layer characteristics (i.e.,
shear stress, wall heat-transfer and displacement thickness) are almost the
same for these two different methods, despite the fact that there are large
differences between the particle density profiles, especially near the wall.
It provides the evidence that the particle density has a very small effect
on dusty-gas boundary-layer flows in the quasi-equilibrium and
near-equilibrium regions. As mentioned before, this approximate treatment
of the particle density (that is, for x > Xcri, pp = Pp is assumed across
the whole boundary layer) results in satisfactory accuracy on the
boundary-layer flow-profiles and characteristic quantities except the
particle density itself. It is due to the fact that the particle and gas
phases are already in a near- or quasi-equilibrium state after the critical
point (x ) xcri).
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